GEOTECHNICAL INVESTIGATION REPORT

Proposed Rock Cut Areas, Delaware River Tinicum to Marcus Hook, Pennsylvania, New Jersey, & Delaware

US Army Corps. of Engineers Philadelphia, Pennsylvania

August 6, 2010

Geotechnical Investigation Report

Proposed Rock Cut Areas, Delaware River Tinicum to Marcus Hook, Pennsylvania, New Jersey & Delaware

> Prepared for: US Army Corps of Engineers Philadelphia, Pennsylvania

D. DREHER WHETSTONE, P.E. - TECHNICAL ASSOCIATE

HOMAS A. NOWLAN, P.E. – SR. VICE PRESIDENT
O'Brien & Gere

TABLE OF CONTENTS

1. Introduction1
2. Site Information2
3. Regional Geology3
4. Exploration and Testing Procedures4
4.1. Drilling and Sampling4
4.2. Laboratory Testing5
5. Summary of Subsurface Conditions9
5.1. Soil materials9
5.2. Rock Materials9
6. Conclusions
6.1. Common Rock Dredging Methods13
6.2. Rippability Evaluation
6.2.1. Rock Mass Rating Systems
6.2.2. Summary of Rippability14
7. References

Tables

Table 4.1: Summary of Soil Laboratory Testing
Table 4.2: Summary of Rock Core Strength Testing
Table 5.1: Summary of Rock Core Data

Table 6.1: Weaver Rippability Rating Summary

Figures

Figure 1 – Boring Location Plan (Sta. 141 + 000 to 128 + 000) Figure 2 – Boring Location Plan (Sta. 128 + 000 to 112 + 000) Figure 3 – Boring Location Plan (Sta. 112 + 000 to 96 + 000)

Appendices

Appendix A - Boring and Rock Core Logs Appendix B - Laboratory Test Reports Appendix C - Core Photographs

1. INTRODUCTION

O'Brien & Gere conducted a geotechnical investigation of the proposed rock cut areas within the Delaware River shipping channel, Tinicum to Marcus Hook ranges. The primary purpose of this investigation is to determine the subsurface soil and bedrock conditions at the selected boring locations that were not previously investigated for the proposed Delaware River channel deepening project. As part of that project, the river which is currently dredged to a depth of 40 feet below Mean Lower Low Water (MLLW), will be deepened to a depth of 45 feet plus 2 feet of pay over-depth in the rock cut areas to assure proper clearance of the bedrock surface. The minimum required dredging depth in bedrock areas will be 47 feet below MLLW. In this section of the river, the MLLW datum is approximately 3.2 feet below North American Vertical datum (NAVD 88).

2. SITE INFORMATION

As shown in Figures 1 through 3, the project "site" includes the Tinicum to Marcus Hook Ranges of the Delaware River, which extends approximately 8.3 miles from Station 96+300 to 140 + 100. Project stationing increases from upstream (north) to downstream (south). The Delaware River shipping channel is located along the Pennsylvania, New Jersey and Delaware shoreline and is approximately 800 feet wide. As stated previously, the current maintenance dredged depth in the channel averages 40 feet below MLLW. Tidal fluctuations result in water surface elevation variances of up to 6 feet.

3. REGIONAL GEOLOGY

According to the <u>Preliminary Bedrock Geologic Map of a Portion of the Wilmington 30- by 60- Minute Quadrangle, Southeastern Pennsylvania</u>, Gale C. Blackmer, PhD, P.G., published by the Pennsylvania Geological Survey in 2005, the study area is situated within igneous and metamorphic rock formations of Ordovician and Sillurian age. The extent of the geologic units presented on the map does not extend into the Delaware River and is truncated by the Coastal Plain onlap. However, based on units mapped near the river and observations collected from rock core samples, the geology of the study area consists of Chester Park Gniess and the Perkins Run Gabbronorite Suite of the Arden Plutonic Supersuite.

The Perkins Run Gabbronorite Suite is a collection of mafic and minor intermediate rocks that crystallized from mantle-derived basaltic magma. Typical compositions are 50-60% labradorite, subequal amounts of orthopyroxene and clinopyroxene, hornblende and lesser olivine and biotite. Based on rock core examination, the borings in the southwestern portion of the study area (CB-287, CB-288 and CB-306) penetrated the Perkins Run Gabbronorite. (Blackmer, 2005)

The Chester Park Gneiss is a medium to coarse grained plagioclase-quartz bitoite gneiss and schist. Local aluminous domains contain muscovite, garnet, kyanite, sillimanite, or cordierite. Irregularly shaped, elongate biotite-rich enclaves range in size from a few centimeters to several meters long. (Blackmer 2005) The unit is generally massive, but layering, defined mainly by biotite abundance, is present locally. Examination of rock cores indicate that Boring CB-290 and borings upstream of CB-290 are located within the Chester Park Gneiss.

4. EXPLORATION AND TESTING PROCEDURES

4.1. DRILLING AND SAMPLING

The subsurface conditions within the project area were evaluated by drilling 22 drive sample soil borings with HQ-size rock coring to a depth of 20 feet below the mudline of the channel, designated as Borings CB-287 through CB-308. Positioning and surveying was performed by licensed surveyors, Taylor Wiseman & Taylor. A Trimble model R8 GNSS Rover utilizing Network RTK corrections was used to determine horizontal and vertical positions. Additional measurements were taken using a weighted tape and hand held measuring tapes. Initial position measurements were made when the lift boat reached the proposed boring locations to verify that the boring location was within ten feet of the proposed location. When the lift boat reached working height, RTK GPS measurements were made upon the deck of the vessel along a baseline relative to the center of the fixed aperture in the deck through which drilling tools were lowered. These measurements established the centerline of the boring and elevation of the deck. The deck elevations were analyzed for levelness and any incline detected on the deck was accounted for. After the drillers advanced casing to the bottom of the river, a weighted tape was lowered within the casing to determine the river bottom elevation. Additional depth measurements were taken to record the elevation of the top of rock using a combination of the weighted tape and careful measurements of the drill rod lengths as they were advanced down the casing. When the drillers reached boring termination depth, a temporary mark was set on the drill rod to indicate the depth of boring termination. All lengths of drill rod were measured to determine the final depth of the drill bit relative to the deck. Upon completion of each boring, RTK GPS measurements were repeated on the deck baseline to validate the initial observations, and were used to determine the final published elevations presented in the surveyor's report and on the boring logs.

The project crew and equipment were mobilized to the USACE's Ft. Mifflin facility on May 12, 2010. The drilling program began the following day on May 13, 2010 and was completed on June 8, 2010. The borings were drilled at a rate of one to two borings per day by our subcontractor, Uni-Tech Drilling Co., Inc., using a CME-750 drill rig mounted on the R/V Hayes lift boat provided by Aqua Survey, Inc. After positioning over the boring coordinates, the lift boat lowered its three hydraulically-operated spuds to raise the lift boat and drill rig above the water surface. Use of the lift boat provided a stable drilling platform above the influence of tidal fluctuations in the river and wakes from passing vessels. The drilling tools were lowered to the river bottom through an aperture in the work deck at the stern of the R/V Hayes lift boat.

The drill crew utilized 6-inch diameter flush threaded steel casing to allow the drill cuttings to be flushed to the surface using water as the drilling fluid. Where soil materials were encountered at the river bottom, the borings were advanced by rotating an inner drill rod equipped with a tri-cone roller bit. Drive sample penetration tests were conducted at continuous two-foot intervals in general accordance with ASTM D3550 - Standard Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils. Soil samples were obtained using a 3-inch diameter split barrel sampler driven with a 300-lb hammer, which was hoisted with a rope and pulley and allowed to free fall 30-inches. The number of hammer blows required to drive the sampler 2 feet was recorded in intervals of 6-inches. The total number of hammer blows required to drive the sampler from 6 to 18 inches represents the "N-value" provided on the logs. It should also be noted that the N-values reported on the logs do not represent the Standard Penetration Test N-value, due to the use of a 3-inch O.D. split barrel sampler and 300-lb. hammer versus a 2-inch O.D. sampler and 140-lb. hammer, as specified for the Standard Penetration Test per ASTM D1586. No standardized correlation between the SPT N-value and the blows per foot obtained using ASTM D3550 procedure has been established. The 3-inch diameter sampler was used to facilitate sampling and optimal recovery of soils containing gravel.

Sampler refusal was encountered when at least 50 blows were recorded at less than 2-inches of sampler penetration, at which point driving of the sampler was terminated for the sample interval. Where sampler refusal was encountered, the blow counts were recorded on the logs as the number of blows over the length of sampler penetration in inches (i.e. 50/2"). The casing was then advanced to just above the next sampling interval and the drilling and sampling process was repeated. After sample collection, the split-barrel sample

was opened, sample recovery recorded, and the sample was photographed. Each soil sample was visually classified in accordance with ASTM D2487, visual-manual procedure for identification of soils, and recorded on the field logs. A representative portion of the samples was placed in moisture-tight glass jars, which were labeled for future reference of boring number, sample depth, blow counts, and sample date. The boring logs provided in Appendix A include a general geotechnical boring log and a detailed rock core log for borings where rock was encountered.

Upon encountering bedrock, the outer casing was seated into the rock and the drilling tools were swapped for an HQ-size diamond bit wireline core barrel. The HQ core barrel cuts a 2.5-inch diameter rock core. Rock coring was conducted in general accordance with ASTM D2113. After coring the length of the core run (typically 5 feet), the wireline tool was used to hoist the inner core barrel and rock core to the surface. The rock cores were placed in a wooden core box and the percent core recovery, rock quality designation (RQD), and visual classification of the rock were recorded on the core logs. RQD is defined as the sum of the recovered intact and sound pieces of rock core having a length of 4 inches or greater divided by the total length of the run, expressed as a percentage. In addition, the discontinuities in the rock cores were carefully examined and their depth and inclination from horizontal were sketched on the logs. After the core boxes were filled to capacity, the boxes were labeled for future reference and the cores were photographed. Photographs of the rock cores are included in Appendix C.

4.2. LABORATORY TESTING

Selected soil and rock samples were subjected to laboratory testing. In general, lab sample selection focused on materials encountered at elevations above, and approximately 5 feet below the proposed dredge depth of 47 feet below MLLW. The samples were delivered to GeoTesting Express, a USACE-validated geotechnical laboratory, in Boxborough, Massachusetts.

Soil samples were tested for moisture content and particle size distribution. Atterberg limits tests were conducted on samples with appreciable silt/clay fines. The test results were used to confirm the visual soil classifications, which were corrected on the logs as appropriate in accordance with the Unified Soil Classification System (USCS) and ASTM D2487. The USCS soil classification is not provided on some of the laboratory gradation test reports in Appendix B, which is due to the fact that Atterberg limits tests were not assigned for samples that were obviously non-plastic. The laboratory will not provide soil classifications on their report unless Atterberg limits tests are run. As such, the table below indicates the samples that were determined to be non-plastic based on visual methods and the USCS classification is presented accordingly. A summary of the laboratory testing conducted on the soil samples is provided in Table 4.1 below:

Table 4.1: Summary of Soil Laboratory Testing

Boring No. Sample No.	ELEV	% Finer # 200 Sieve	LL	ΡI	USCS Soil Classification	Water Content (%)
CB-289 S-1	-45.4 to -47.4	87	107	71	Fat CLAY (CH)	138.2
CB-289 S-2	-47.4 to -48.3	9	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	5.6
CB-292 S-1	-45.7 to -47.7	7	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	5.4
CB-292 S-2	-47.7 to -48.4	7	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	4.8
CB-293 S-2	-50.1 to -52.1	84	70	26	Elastic SILT with sand (MH)	59.1

Boring No. Sample No.	ELEV	% Finer # 200 Sieve	LL	PI	USCS Soil Classification	Water Content (%)
CB-295 S-1	-45.3 to -47.3	6	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	7.1
CB-296 S-1	-44.7 to -46.7	7	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	7.1
CB-296 S-2	-46.7 to -48.7	24	21	6	Silty, Clayey SAND with gravel (SC-SM)	5.2
CB-298 S-1	-45.1 to -47.1	5	NPV	NPV	Well Graded GRAVEL with silt and sand (GW-GM)	7.0
CB-298 S-2A	-47.1 to -48.1	6	NP	NP	Well Graded GRAVEL with silt and sand (GW-GM)	5.9
CB-298 S-2B	-48.1 to -49.1	28	NP	NP	Silty SAND (SM)	14.0
CB-299 S-1	-48.0 to -50	9	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	7.1
CB-301 S-1	-45.4 to -47.4	6	NPV	NPV	Poorly Graded GRAVEL with silt and sand (GP-GM)	6.3
CB-301 S-2	-47.4 to -49.4	7	NPV	NPV	Well Graded GRAVEL with silt and sand (GW-GM)	5.8
CB-303 S-1	-45.0 to -47.0	11	NPV	NPV	Poorly Graded SAND with silt and gravel (SP-SM)	9.8
CB-305 S-1	-42.4 to -44.4	2	NP	NP	Poorly Graded GRAVEL with sand (GP)	8.3
CB-305 S-2	-44.4 to -46.4	3	NP	NP	Poorly Graded GRAVEL with sand (GP)	10.3
CB-305 S-3	-46.4 to -48.4	4	NP	NP	Poorly Graded GRAVEL with sand (GP)	2.1
CB-306 S-1	-44.6 to -46.6	67	88	53	Sandy Fat CLAY (CH)	53.1
CB-306 S-2	-46.6 to -48.6	68	53	25	Sandy Fat CLAY (CH)	38.4
CB-308 S-1	-45.2 to -47.2	5	NP	NP	Poorly graded SAND (SP)	25.0
CB-308 S-2A	-47.2 to -49.2	3	NP	NP	Poorly graded SAND (SP)	26.0
CB-308 S-2B	-47.2 to -49.2	93	84	50	Fat CLAY (CH)	76.3

^{*}Datum: Mean Lower Low Water (MLLW)

Notes: NPV = Non-plastic fines as determined by visual methods; NP = Non-plastic fines as determined by laboratory methods; LL = Liquid Limit; PI = Plastic Index

Rock cores were subjected to strength tests inclusive of uniaxial compressive strength (ASTM D7012 C), point load strength index (ASTM D5731), and splitting tensile strength (ASTM D3967). The results of the strength testing were used to establish the Rock Mass Rating (RMR) and to aid in the rippability evaluation. The results of the unconfined compressive strength tests and estimated compressive strengths from the point load index tests are provided on the individual core logs. A summary of all laboratory strength test results is presented in Table 4.2 below. The laboratory test reports are provided in Appendix B. The side straightness tolerances on

some of the cores tested for compressive strength did not meet ASTM D4543. The condition of the core side straightness could not be corrected and the cores were tested in the as-received condition. The effect of the side straightness on the compressive strength result is unknown.

Table 4.2 – Summary of Rock Core Strength Tests

Boring No.	Run No.	ELEV*	Unconfined Compressive Strength (psi)	Point Load Index/ Est. Compressive Strength (psi)	Splitting Tensile Strength (psi)
CB-287	R-1	-47.90 to -48.0-			955
CB-287	R-1	-50.62 to -51.08	22,727		
CB-287	R-2	-52.19 to -52.30			1,870
CB-288	R-1	-42.92 to -43.37	22,624		
CB-288	R-1	-43.60 to -43.7			1,620
CB-288	R-1	-44.12 to -44.58	25,971		
CB-288	R-1	-46.82 to -46.92			1,180
CB-289	R-1	-50.98 to -51.45	15,241		
CB-289	R-2	-53.00 to -53.09			1,260
CB-289	R-2	-53.36 to -53.82	17,134		
CB-290	R-2	-46.93 to -47.38	6,643		
CB-290	R-2	-48.78 to -49.22	31,331		
CB-290	R-2	-47.70 to -47.79			1,560
CB-290	R-3	-52.3 to -52.71	8,520		
CB-291	R-1	-48.00 to -48.11			1,043
CB-291	R-2	-50.92 to -51.38	11,487		
CB-292	R-1	-49.10 to -49.21			758
CB-292	R-1	-52.04 to -52.14		591/11,200	
CB-294	R-1	-45.30 to -45.40			663
CB-294	R-2	-48.45 to -48.91	9,964		
CB-294	R-2	-49.08 to -49.46	13,137		
CB-295	R-1	-48.44 to -48.88	11,152		
CB-295	R-1	-51.02 to -51.48	5,524		
CB-297	R-1	-47.72 to -48.06	17,023		
CB-297	R-2	-51.17 to -51.27			1,510
CB-300	R-1	-42.72 to -43.18	3,348		

Boring No.	Run No.	ELEV*	Unconfined Compressive Strength (psi)	Point Load Index/ Est. Compressive Strength (psi)	Splitting Tensile Strength (psi)
CB-300	R-1	-43.98 to -44.34	5,846		
CB-300	R-2	-47.49 to -47.59			506
CB-301	R-1	-48.94 to -49.36	5,234		
CB-301	R-1	-49.94 to -50.4	13,582		
CB-302	R-1	-45.33 to -45.71	2,850		
CB-302	R-1	-46.50 to -46.61		158/2,960	
CB-302	R-2	-47.84 to -47.96		104/1,920	
CB-302	R-2	-49.29 to -49.72	6,043		
CB-303	R-1	-47.12 to -47.22		646/12,200	
CB-303	R-2	-50.03 to -50.38	14,630		
CB-304	R-1	-48.85 to -49.27	3,794		
CB-304	R-2	-51.21 to -51.29		162/3,090	
CB-307	R-2	-48.35 to -48.81	14,145		
CB-307	R-2	-49.36 to -49.45			468

^{*}Datum: Mean Lower Low Water (MLLW)

The strength tests indicate the rock to be much weaker where shear failure occurred along well-defined foliation planes, with relative strength ranging from weak to medium strong. The strength of the rock in the absence of well-defined foliation planes was found to be strong to very strong. The photographs in the laboratory reports help to illustrate this observation.

5. SUMMARY OF SUBSURFACE CONDITIONS

A generalized description of the subsurface conditions encountered in the borings is presented in the following sections:

5.1. SOIL MATERIALS

Soil materials were encountered at the river bottom at 12 of the 22 boring locations. Borings CB-305 and CB-308 were drilled to the target depth of 20 feet without encountering rock. The soil descriptions provided on the logs were established in general accordance with the visual-manual procedure for soil identification (ASTM D2488) and confirmed by laboratory soil classification testing of representative samples. In general, the predominant soil type encountered in the borings consisted of poorly to well graded gravel with silt and sand. The gravel is generally sub-rounded to sub-angular of mixed lithology and was interpreted to be representative of the Trenton Gravel Formation. Apparent densities of the gravels varied significantly, but were generally in the dense to very dense range based on the non-standard N-values obtained from driving a 3-inch O.D. split barrel sampler with a 300-lb. hammer, as discussed in Section 4.1 of this report. It should be noted that the blow counts could be somewhat amplified due to the presence of small cobbles within the gravel matrix that may have plugged or blocked the 3-inch diameter sampler opening at some locations. Some interbedded layers of very soft (weight-of-hammer) to medium stiff fat clays and elastic silts were encountered in four of the 22 borings. Localized deposits of medium dense to very dense clean to silty and clayey sands were also encountered in a few borings. The soils typically transitioned into saprolitic gneiss, which exhibited sampler penetration resistances of 30 to greater than 100 blows per foot.

5.2. ROCK MATERIALS

Bedrock was encountered at variable depths in 20 of the 22 borings. Rock was encountered at or above the proposed dredge depth in 10 of these 20 borings. All of the rock encountered in this exploration was identified as gneiss, which was observed to be predominantly fine-grained, and non-foliated to foliated at 50 to 80 degrees from the horizontal. The majority of the rock was observed to be slightly weathered to fresh, with a few instances of moderately to highly weathered rock. The Perkins Run Gabbronorite Suite bedrock core displayed only a massive character with no discernible weakness planes.

The Chester Park Gneiss constituently displayed a steeply dipping foliation plane, but the strike was not identifiable. Reconnaissance to the type section in Chester Park PA was under taken and yielded the following measurements.

Foliations:

Chester Park Type Section:

Location 1-"Bouldered" Outcrop on northeast side of Creek south of bridge In-situ Gneiss N-S 65°E Gneiss N10°E 85°SE

Location 2- top of Hill due east

Schist N15°E 50°SE (biotite and extensive muscovite present)

Location 3-back downstream and slope (south) about half way.

Gneiss E-W 70⁰N

Gneiss E-W 69⁰N

Location 4 downstream at the base of slope Gneiss N10°E 80°SE

Core recovery for individual runs varied from 5 to 100 percent, averaging about 92 percent for the study area as a whole. Based on rock quality designations ranging from 0 to 100 percent, the quality of the rock is highly variable from boring to boring, ranging from very poor to excellent. As shown in Table 5.1 below, RQD between individual core runs of the same boring remained variable, with no apparent trending of rock quality with depth. The average RQD of the total 83 core runs for the project is 64 percent, or "FAIR" rock quality.

Rock cores obtained from elevations at or above the proposed dredge line elevation of 47 feet below MLLW exhibited recoveries ranging from 40 to 100 percent, and RQD's ranging from 0 to 98 percent. For the cores above the proposed dredge depth, an average recovery of 86 percent and an average RQD of 43 percent (POOR) were indicated. A summary of the rock core data for each core run is provided in Table 5.1 below.

The Rock Mass Rating System (ASTM D5878) was applied to the upper core run where the required data was available. This system of rock mass characterization has been applied to engineering evaluation of rock masses in tunneling, hard rock mining, coal mining, stability of rock slopes, rock foundations, borability, rippability, dredgeability, weatherability, and rock bolting. The parameters used to classify the rock mass in accordance with the RMR system are uniaxial compressive strength, RQD, spacing of discontinuities, condition of discontinuities, ground water conditions, and orientation of discontinuities. It should be noted that the RMR system was intended to be applied to "structural regions" within the rock mass where the various parameters being evaluated are somewhat uniform. Typically, these structural regions cover greater areas and depths than those explored for this project. In addition, the parameter of joint spacing is not intended to be gathered from boreholes, but rather a joint survey. For the purpose of this report, the discontinuity spacing was based on the borehole data, since no joint survey was available. The RMR was applied to the upper core run to provide an evaluation of the rock mass on a smaller scale than would be applied in a tunneling project. The groundwater parameter was always assigned a rating of zero given that the rock is submerged. While the dip angle of the discontinuities and foliation planes identified in the rock cores was recorded, the strike orientation of the rock formation was not determined during this exploration. Therefore, the reduction values for strike and dip orientation were not applied to the raw RMR, which results in a more conservative evaluation of rippability given that a rock mass rated with a higher RMR would generally be more difficult to rip.

Based on our interpretation of the classification parameters from the rock cores, the RMR for the upper rock cores ranges from 41 (FAIR) to 70 (GOOD). The RMR for the cores indicated most of the rock to fall within Class III, FAIR rock mass class. The RMR for the rock core runs is provided in Table 5.1 below.

Table 5.1: Summary of Rock Core Data

BORING NO.	RUN NO.	ELEV*	Predominant Rock Type	Recovery (%)	RQD** (%)	RMR
CB-287	1	-47.1 to -51.43	GNEISS	65	46/POOR	50/FAIR
CB-287	2	-51.43 to -56.43	GNEISS	100	100/EXCELLENT	-
CB-287	3	-56.43 to -61.43	GNEISS	98	93/EXCELLENT	-
CB-287	4	-61.43 to -66.43	GNEISS	100	100/EXCELLENT	-
CB-287	5	-66.43 to -67.43	GNEISS	100	100/EXCELLENT	-
CB-288	1	-42.8 to -47.8	GNEISS	98	98/EXCELLENT	70/GOOD
CB-288	2	-47.8 to -52.8	GNEISS	65	35/POOR	-
CB-288	3	-52.8 to -57.8	GNEISS	51	13/VERY POOR	-
CB-288	4	-57.8 to -62.8	GNEISS	83	70/FAIR	-
CB-289	1	-49.4 to -51.65	GNEISS	66	40/POOR	51/FAIR
CB-289	2	-51.65 to -56.23	GNEISS	91	71/FAIR	-
CB-289	3	-56.23 to -61.65	GNEISS	103	66/FAIR	-
CB-289	4	-61.65 to -65.9	GNEISS	98	33/POOR	-
CB-290	1	-45.9 to -46.9	GNEISS	50	N/A	N/A
CB-290	2	-46.9 to -51.9	GNEISS	95	85/GOOD	55/FAIR

BORING NO.	RUN NO.	ELEV*	Predominant Rock Type	Recovery (%)	RQD** (%)	RMR
CB-290	3	-51.9 to -56.9	GNEISS	100	41/POOR	-
CB-290	4	-56.9 to -61.9	GNEISS	103	80/GOOD	-
CB-290	5	-61.9 to -65.9	GNEISS	94	77/GOOD	-
CB-291	1	-45.4 to -48.4	GNEISS	77	0/VERY POOR	41/FAIR
CB-291	2	-48.4 to -53.4	GNEISS	100	40/POOR	-
CB-291	3	-53.4 to -58.4	GNEISS	100	61/FAIR	-
CB-291	4	-58.4 to -63.4	GNEISS	100	100/EXCELLENT	-
CB-291	5	-63.4 to -65.4	GNEISS	100	67/FAIR	-
CB-292	1	-48.7 to -52	GNEISS	95	24/VERY POOR	42/FAIR
CB-292	2	-52 to -57.2	GNEISS	100	80/GOOD	-
CB-292	3	-57.2 to -62.2	GNEISS	90	86/GOOD	-
CB-292	4	-62.2 to -66.2	GNEISS	108	100/EXCELLENT	
CB-293	1	-64.1 to -69.1	GNEISS	93	80/GOOD	-
CB-294	1	-44.0 to -46.17	GNEISS	100	34/POOR	49/FAIR
CB-294	2	-46.17 to -51.17	GNEISS	100	40/POOR	-
CB-294	3	-51.17 to -56.17	GNEISS	100	75/GOOD	-
CB-294	4	-56.17 to -61.17	GNEISS	100	85/GOOD	-
CB-294	5	-61.17 to -64.17	GNEISS	86	47/POOR	-
CB-295	1	-47.3 to -52.3	GNEISS	100	65/FAIR	54/FAIR
CB-295	2	-52.3 to -57.3	GNEISS	98	66/FAIR	-
CB-295	3	-57.3 to -62.3	GNEISS	100	100/EXCELLENT	-
CB-295	4	-62.3 to -65.3	GNEISS	100	86/GOOD	-
CB-296	1	-49.87 to -53.2	GNEISS	78	0/VERY POOR	-
CB-296	2	-53.2 to -58.2	GNEISS	95	35/POOR	-
CB-296	3	-58.2 to -63.2	GNEISS	100	63/FAIR	-
CB-296	4	-63.2 to -65.2	GNEISS	100	67/FAIR	<u>-</u>
CB-297	1	-46.1 to -48.43	GNEISS	96	18/VERY POOR	41/FAIR
CB-297	2	-48.43 to -53.43	GNEISS	50	12/VERY POOR	-
CB-297	3	-53.43 to -58.43	GNEISS	96	46/POOR	-
CB-297	4	-58.43 to -66.43	GNEISS	100	91/EXCELLENT	-
CB-298	1	-56.85 to -59.1	GNEISS	100	70/FAIR	-
CB-298	2	-59.1 to -64.1	GNEISS	<u>55</u>	33/POOR	-
CB-298	3	-64.1 to -66.1	GNEISS	75	75/GOOD	
CB-299	1	-58.5 to -60.5	GNEISS	62	0/VERY POOR	-
CB-299	2	-60.5 to -65.5	GNEISS	100	81/GOOD	-
CB-299	3	-65.5 to -68.5	GNEISS	100	78/GOOD	-
CB-300	1	-42.7 to -47.2	GNEISS	94	70/FAIR	50/FAIR
CB-300	2	-47.2 to -52.2	GNEISS	96	65/FAIR	-
CB-300	3	-52.2 to -57.2	GNEISS	100	100/EXCELLENT	-
CB-300	4	-57.2 to -62.2	GNEISS	100	100/EXCELLENT	-
CB-300	5	-62.2 to -63.2	GNEISS	100	100/EXCELLENT	-
CB-301	1	-48.4 to -51.9	GNEISS	93	64/FAIR	56/FAIR
CB-301	2	-51.9 to -56.9	GNEISS	100	100/EXCELLENT	-
CB-301	3	-56.9 to -61.9	GNEISS	93	66/FAIR	-
CB-301	4	-61.9 to -65.9	GNEISS	98	93/EXCELLENT	40/EAID
CB-302	1	-44.4 to -48.9	GNEISS	94	70/FAIR	49/FAIR

BORING NO.	RUN NO.	ELEV*	Predominant Rock Type	Recovery (%)	RQD** (%)	RMR
CB-302	2	-48.9 to -53.9	GNEISS	100	76/GOOD	-
CB-302	3	-53.9 to -58.9	GNEISS	100	76/GOOD	-
CB-302	4	-58.9 to -63.9	GNEISS	100	86/EXCELLENT	-
CB-302	5	-63.9 to -64.9	GNEISS	100	100/EXCELLENT	-
CB-303	1	-46.7 to -49.0	GNEISS	93	32/POOR	48/FAIR
CB-303	2	-49.0 to -54.0	GNEISS	100	33/POOR	-
CB-303	3	-54.0 to -59.0	GNEISS	100	81/GOOD	-
CB-303	4	-59.0 to -64.0	GNEISS	100	88/GOOD	-
CB-303	5	-64.0 to -66.5	GNEISS	100	86/GOOD	-
CB-304	1	-47.2 to -49.7	GNEISS	100	90/EXCELLENT	52/FAIR
CB-304	2	-49.7 to -54.7	GNEISS	83	50/FAIR	-
CB-304	3	-54.7 to -59.7	GNEISS	100	73/FAIR	-
CB-304	4	-59.7 to -64.7	GNEISS	96	48/POOR	-
CB-304	5	-64.7 to -67.7	GNEISS	100	66/FAIR	-
CB-305			NO BEDROCK E	NCOUNTERED		
CB-306	1	-50.6 to -54.1	GNEISS	5	0/VERY POOR	-
CB-306	2	-54.1 to -59.1	GNEISS	96	51/FAIR	-
CB-306	3	-59.1 to -64.1	GNEISS	98	92/EXCELLENT	-
CB-306	4	-64.1 to -65.1	GNEISS	100	0/VERY POOR	-
CB-307	1	-44.4 to -46.9	GNEISS	40	0/VERY POOR	46/FAIR
CB-307	2	-47.4 to -52.4	GNEISS	100	93/EXCELLENT	-
CB-307	3	-52.4 to -57.4	GNEISS	100	90/EXCELLENT	
CB-307	4	-57.4 to -62.4	GNEISS	100	96/EXCELLENT	-
CB-307	5	-62.4 to -64.9	GNEISS	100	100/EXCELLENT	-
CB-308			NO BEDROCK E	NCOUNTERED		

^{*}Datum: Mean Lower Low Water (MLLW)

^{**}RQD is defined as the sum of the recovered intact and sound pieces of rock core having a length of 4 inches or greater divided by the total length of the run, expressed as a percentage.

RQD	Classification of Rock Quality
0 – 25 %	Very Poor
25 – 50 %	Poor
50 – 75 %	Fair
75 – 90 %	Good
90 - 100%	Excellent
DIAD	CI IC II CDIAD

RMR	Classification of RMR
<20	Class V – Very Poor Rock
21 - 40	Class IV – Poor Rock
41 - 60	Class III – Fair Rock
61 - 80	Class II – Good Rock
81 – 100	Class I – Very Good Rock

6. CONCLUSIONS

The dredging template for this rock removal project is anticipated to be -47 feet MLLW, meaning that all materials will be required to be 100 percent clear to this elevation based on a post-dredging survey. In addition to a variety of sediments and unconsolidated materials, rock materials will be encountered during dredging operations. Based on the bottom elevations established at the boring locations, rock was encountered at elevations up to approximately 5 feet above the proposed dredging template line, but could be present at higher elevations in unexplored areas. In order to establish the anticipated dredging template, the contractor will inherently encounter materials consisting of both soil and rock at elevations below -47 feet MLLW. Based on the results of this geotechnical exploration, the rock materials encountered above and below the proposed dredging template of 47 feet below MLLW generally consist of gneiss of highly variable rock quality ranging from very poor to excellent. As such, the rippability or mechanical dredgeability is expected to vary significantly along the reach of channel covered by this project.

6.1. COMMON ROCK DREDGING METHODS

Various equipment and methods of underwater rock excavation and mechanical pre-treatment are available. The most common methods include the barge-mounted backhoe, the dipper (power shovel), and suction cutter dredges. These direct dredging methods typically break up or cut the rock and remove it to the surface simultaneously. Other mechanical pre-treatment methods which only break the rock into manageable pieces for later removal include the backhoe bucket-mounted ripper tooth, drag picks, and crushing with a heavy chisel or punch that is dropped onto the rock surface; however, mechanical pre-treatment is rarely performed for navigation projects such as this.

6.2. RIPPABILITY EVALUATION

Mechanical dredgeability or underwater rippability of rock is defined as the ability to excavate rock underwater with respect to the characteristics of the material, type of equipment, and methods of excavation. Rippability of rock is highly dependent on contractor means and methods, and the ultimate determination of whether or not the rock will be rippable is left to the contractor. This report focuses on presenting the data gathered from the rock cores and laboratory testing and applying the data to established rating systems for use as a qualitative index of the relative difficulty of rock ripping. Given the many factors affecting the rippability of rock, it should be understood that the conclusions presented herein are not intended to dictate with any certainty what rock will be rippable. The contractor should use his own experience along with the all of the data included this report to make his own judgment regarding the rippability of the rock.

6.2.1. Rock Mass Rating Systems

As presented in Section 5 of this report, the Rock Mass Rating (RMR) system was used as one index of the rock quality and can be used to provide a qualitative index of the anticipated difficulty of rippability; however, it should be understood that the RMR system was not specifically designed for rippability evaluation. Based on the RMR data, it should be expected that ripping will be moderately difficult to difficult at the majority of the rock outcrop areas explored. The rock encountered at Borings CB-288, CB-289, CB-290, and CB-304 is anticipated to be very difficult to rip and will likely require blasting to loosen the rock prior to removal.

Weaver (1975) developed a rippability rating (RR) system based on similar weighted rock mass parameters and added seimic velocity, joint continuity, and weathering parameters. Greater weighting is applied to the joint spacing parameter given its significant influence on rippability. The Weaver RR for the upper core runs is provided in Table 6.1 below based on the available data and our interpretation of the parameters. In addition, the table includes the correlated seismic velocity. The percent recovery and RQD data is provided for comparison to the resulting RR.

Table 6.1: Weaver Rippability Rating Summary

BORING NO.	RUN NO.	ELEV*	Recovery (%)	RQD (%)	RR	CORRELATED SEISMIC VELOCITY (fps)
CB-287	1	-47.1 to -51.43	65	46/POOR	43	5,400
CB-288	1	-42.8 to -47.8	98	98/EXCELLENT	46	6,000
CB-289	1	-49.4 to -51.6	66	40/POOR	45	6,000
CB-290	2	-46.9 to -51.9	95	85/GOOD	45	6,000
CB-291	1	-45.4 to -48.4	77	0/VERY POOR	40	5,300
CB-294	1	-44.0 to -46.17	100	34/POOR	40	5,300
CB-295	1	-47.3 to -52.3	100	65/FAIR	40	5,300
CB-297	1	-46.1 to -48.43	96	18/VERY POOR	40	5,300
CB-300	1	-42.7 to -47.2	94	70/FAIR	35	5,100
CB-301	1	-48.4 to -51.9	93	64/FAIR	36	5,100
CB-302	1	-44.4 to -48.9	94	70/FAIR	35	5,100
CB-303	1	-46.7 to -49.0	93	32/POOR	40	5,300
CB-304	1	-47.2 to -49.7	100	90/EXCELLENT	36	5,100
CB-307	1	-44.4 to -46.9	40	0/VERY POOR	46	6,000

*Datum: Mean Lower Low Water (MLLW)

RR	Descriptive Classification
<21	Very Poor Rock
22 - 43	Poor Rock
44 – 59	Fair Rock
60 – 74	Good Rock
75 – 100	Very Good Rock

Based on Weaver's RR, the correlated seismic velocity, and the Caterpillar Tractor bulldozer ripping charts, the upper rock is shown to be rippable by a Caterpillar D8 bulldozer or larger, equipped with a hydraulic ripping shank. Based on correspondence from consultants working in the metamorphic rocks of the Atlantic Piedmont Province, which was published in an ASCE Geotechnical Special Publication entitled *Foundations and Excavations in Decomposed Rock of the Piedmont Province* (1987), a seismic velocity of 6000 fps is considered the typical transition point from ripping to blasting for land based applications using tractor drawn ripping shanks. The above table is not intended to state whether or not the rock will be rippable, but provides a qualitative index of rock mass conditions for use along with the other data presented in this report and correlation to the contractor's own experience working in materials of similar properties.

6.2.2. Summary of Rippability

In our evaluation of rippability, several rock mass rating systems were applied as detailed above. Each of the rating systems incorporates the conditions observed in the rock cores and lab test data such as fracture spacing, compressive strength, weathering, and fracture orientation. Based on the laboratory strength tests, the majority of the rock tested is strong to very strong, which will make mechanical breaking of intact rock very difficult. For this reason, joint spacing becomes a very important parameter in evaluation of rippability, as more closely spaced joints in the rock will make ripping easier. Examination of the cores at the 10 boring locations where rock lies above the proposed dredge line elevation of -47 feet MLLW indicates that fracture spacing ranges from very slightly fractured as observed in CB-288 and CB-304, moderately fractured in CB-290, CB-294, CB-300, CB-302, and CB-303, and intensely fractured in CB-291, CB-297, and CB-307.

7. REFERENCES

- Blackmer, Gale C., 2005, Preliminary Bedrock Geologic Map of a Portion of the Wilmington 30 by 60 Minute Quadrangle, Southeastern Pennsylvania, Pennsylvania Topographic and Geologic Survey OFBM-05-01.0.
- Bosbyshell, Howell, 2010, Personal communication, June 4, 2010, West Chester University regarding his work on the Chester Park Gneiss.
- Caterpillar, Inc. October 1986. Caterpillar Performance Handbook. Edition 17, Section 1 -11. Caterpillar, Inc. Peoria, IL
- Smith, Hardy J. 1986a Estimating Rippability by Rock Mass Classification. Proceedings, 27th US Symposium on Rock Mechanics, University of Alabama, June 1986. Society of Mining Engineers, Inc. Littleton, CO
- Smith, Hardy J. 1987 Estimating the Mechanical Dredgeability of Rock. Proceedings, 28th US Symposium on Rock Mechanics, Tucson, AZ, June 1987.
- Smith, Ronald E., Editor 1987 Foundations and Excavations in Decomposed Rock of the Piedmont Province. Proceedings of Geotechnical Div. sponsored session of ASCE Convention, Atlantic City, NJ, ASCE Geotechnical Special Publication No. 9, April 28, 1987.

DELAWARE RIVER, TII GE	NICUM TO MARCUS OTECHNICAL INVES	HOOK, PENNSYLVAI	NIA, NEW JERSEY & DELAWARE OSED ROCK CUT AREAS REPORT
			Appendices

Boring and Rock Core Logs

UNIFIED SOIL CLASSIFICATION SYSTEM - ASTM D2488

	MAJOR DIVISION		GROUP SYMBOL	LETTER SYMBOL	GROUP NAME
		GRAVEL WITH		GW	Well-graded GRAVEL
		* 5% FINES		GP	Poorly graded GRAVEL
	GRAVEL AND GRAVELLY		文化	GW-GM	Well-graded GRAVEL with silt
	SOILS MORE THAN 50% OF	GRAVEL WITH BETWEEN 5%		GW-GC	Well-graded GRAVEL with clay
	COARSE FRACTION	AND 15% FINES		GP-GM	Poorly graded GRAVEL with silt
	RETAINED ON NO. 4 SIEVE		0	GP-GC	Poorly graded GRAVEL with clay
COARSE		GRAVEL WITH		GM	Silty GRAVEL
GRAINED SOILS		≥ 15% FINES		GC	Clayey GRAVEL
CONTAINS MORE THAN 50% FINES		SAND WITH		SW	Well-graded SAND
30,701.11.120		* 5% FINES		SP	Poorly graded SAND
	SAND AND SANDY SOILS MORE THAN 50% OF	SAND WITH BETWEEN 5%		SW-SM	Well-graded SAND with silt
				SW-SC	Well-graded SAND with clay
	COARSE FRACTION PASSING ON	AND 15% FINES		SP-SM	Poorly graded SAND with silt
	NO. 4 SIEVE			SP-SC	Poorly graded SAND with clay
		SAND WITH		SM	Silty SAND
		≥ 15% FINES		SC	Clayey SAND
				ML	Inorganic SILT with low plasticity
FINE		LIQUID LIMIT LESS THAN 50		CL	Lean inorganic CLAY with low plasticity
GRAINED SOILS	SILT AND			OL	Organic SILT with low plasticity
CONTAINS MORE THAN 50% FINES	CLAY	LIQUID LIMIT		МН	Elastic inorganic SILT with moderate to high plasticity
		GREATER THAN 50		СН	Fat inorganic CLAY with moderate to high plasticity
				ОН	Organic SILT or CLAY with moderate to high plasticity
HI	GHLY ORGANIC SO	ILS	7 77 77 7 77 77 77 77	PT	PEAT soils with high organic contents

NOTES:

- 1) Sample descriptions are based on visual field and laboratory observations using classification methods of ASTM D2488. Where laboratory data are available, classifications are in accordance with ASTM D2487.
- 2) Solid lines between soil descriptions indicate change in interpreted geologic unit. Dashed lines indicate stratigraphic change within the unit.
- 3) Fines are material passing the U.S. Std. #200 Sieve.

							H	ole No.	<u>CB-287</u>
DRILLI	NG LO	~ I	/ISION	INSTALLA		otrict		SHEET	1
1. PROJECT		- <u> </u>	North Atlantic		delphia Di		HQ Diamond Bit	OF 1	SHEETS
	ical Inv	of Rock	Cut Areas	I			OWN (TBM or MSL)		
2. LOCATION (Coordinates	s or Station)	MLLV	V				
		1 348,460	6.7 E 223,737.2			'S DESIGNA	ATION OF DRILL		
3. DRILLING AG Uni-Tech		Co Inc		CME-		/ERRI IPDE	N DISTURBED	UNDISTUR	RBED
4. HOLE NO. (A				SAMP	LES TAKEN		0)
file number)	חוורף		CB-287	14. TOTA	L NUMBER (CORE BOX	ES 3		
5. NAME OF DI Jim Evans				15. ELEV	ATION GRO	JND WATE			
6. DIRECTION				16. DATE	HOLE	STA		OMPLETED	
∨ERTICA	AL	INCLINED	DEG. FROM VERT.		ATION TOP) OE HOLE	6/3/2010 -47.1	6/3/20	710
7. THICKNESS	OF OVERE	BURDEN	0.0		L CORE REG				92 %
8. DEPTH DRIL	LED INTO	ROCK	20.3	19. GEOL		JOVERTIC	JK BOKING		92 /
9. TOTAL DEP	TH OF HOL	E	20.3				Steve Scott		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	S	% CORE RECOV-	BOX OR SAMPLE	(Drilling time, w	ARKS ater loss, dep	oth
а	b	С	(Description) d		ERY e	NO. f	weathering, etc	c., if significan	ıt)
-47.1	0.0	XXXV	BEDROCK - See Core Log CB-287			'		3	-
			19						
									F
	_=								E
									E
									E
									F
	=								E
									E
									E
									E
									E
	_=								E
									E
									E
									E
	_=								E
	=								
	_=								E
									E
	-								E
									E
									E
									E
									F
									F
									E
	=								E
									E
									F
									F
									E
	_=								E
									E
-67.4	20.3								F
-07.4	20.0	//X///X	Boring Terminated at 20.33 ft. below rive	er					F
			bottom.						F
		1							E

O'BRIEN of Project Locate Driller Hole (ct (Geot N348 Jim E	echnical ,835.000 Evans Vertical	Inv.	of Ro 5,092	ock C	ut Are	E LOG eas HQ Diamond Drill SRS]	CB-287 Elevation -47.10ft Dates 6/3/10 Date 6/3/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	2 3	65	Intensely Fractured - Moderately Fractured	Multiple	46	R5	MW - SW	 Intensely fractured to 1.3 ft. MB, 45° MB, 15° MB, 5° 	22.7	RUN #1: GNEISS, fine grained, occaissional coarse grained, no foliation, gray, black, white, green, phaneritic, intensely fractured to 1.3 ft then moderately to slightly weathered, moderately hard
amond Impregnated ————————————————————————————————————	5 6 7 8 9	100	Slightly Fractured	2	100		F	— MB, horiz. — MB, 45° — MB, 15°		RUN #2: GNEISS, fine grained, occaissional coarse grained, no foliation, gray, black, white, green, phaneritic, fresh, hard, slightly fractured
HQ Diamo	11 12 13	98	Slightly Fractured	0	93		F	— MB, 15° — MB, 5° — MB, 5° ∼ MB, horiz.		RUN #3: Same as RUN #2
	15	100	Slightly Fractured	0	100		F			RUN #4: Same as RUN #2
CORE RECOV Length of cor core run DISCONTINUI No. of fractures	e — x 100 TY SPAC	CING	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak < 0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Locatio Driller Hole O	e Con N	Geot N348 Jim E	echnical ,835.000/ Evans Vertical	Inv.	of Ro 5,092.	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-287 Elevation -47.10ft Dates 6/3/10 Date 6/3/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description
OH —	19 20	100	Unfractured	0	100		F	— MB, horiz. — MB, horiz.		RUN #4: Same as RUN #2 (continued) RUN #5: Same as RUN # 2
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35									Boring Terminated at 20.3 ft.
Length of core core run DISCONTINUIT No. of fractures/	- x 100 Y SPAC	CING	R.Q.D. Sum core le			- x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 - 14.5 CW	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By:

							Hole No. CB-28	<u>8</u>
DRILLI	NG LO	•	/ISION	INSTALL			SHEET 1	1
	NO LOC	۱ ر	North Atlantic		delphia Di		OF 1 SHEETS	3
1. PROJECT	iaal li	- f D ·	Cut Areas		AND TYPE O		HQ Diamond Bit	_
2. LOCATION (Cut Areas			VATION SH	OWN (TBM or MSL)	
) 1.7 E 225,426.5	MLLV		IC DECICAL	ATION OF DRILL	-
3. DRILLING AC		1 0 10,00	1.7 6 220,420.0	CME-		S DESIGNA	ATION OF DRILL	
Uni-Tech		Co., Inc				VERBURDE	N DISTURBED UNDISTURBED	-
4. HOLE NO. (A			le and	SAMP	LES TAKEN		0 0	
file number)			CB-288	14. TOTA	L NUMBER (CORE BOX	ES 2	
5. NAME OF DE Jim Evans				15. ELEV	ATION GRO	UND WATE	R 0.0	1
6. DIRECTION				10 5175		STA	ARTED COMPLETED	1
✓ VERTICA		INCLINED	DEG. FROM VERT.	16. DATE	HOLE		6/3/2010 6/3/2010	
				17. ELEV	ATION TOP	OF HOLE	-42.8	
7. THICKNESS			0.0	18. TOTA	L CORE RE	COVERY FO	OR BORING 70 %	, 0
8. DEPTH DRIL			20.0	19. GEOL	.OGIST			1
9. TOTAL DEP	TH OF HOL	E	20.0				Steve Scott	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth	
	b		(Description)		ERY	NO. f	weathering, etc., if significant)	
-42.8	0.0 —	c /	BEDROCK - See Core Log CB-288		е	'	9	╆
12.0			BEBROOK - Occ Gold Edg GB-200					E
								E
								E
	_							F
								E
-47.0	4.2	XXX						F
								F
								E
								E
								E
								E
								F
								E
								E
								F
		XXXX						E
								F
								E
								E
								E
								E
	_=							E
								E
	_=							F
								E
								E
								E
								E
		X//X//						F
								F
	=	X//X//						E
								F
		\mathbb{K}/\mathbb{K}						E
00.0	=							F
-62.8	20.0	<u> </u>	Boring Terminated at 20 ft. below river b	oottom	1			F
			Borning Tomminated at 20 ft. Delow fiver t	OUUII.				E
								F
								E

O'BRIEN Proje Locat Driller Hole	ect (Geot N349 Jim E	echnical ,351.700/ Evans Vertical	Inv.	of Ro 5,426.	ock C	ut Are	E LOG eas HQ Diamond Drill SRS	1	CB-288 Elevation -42.80ft Dates 6/3/10 Date 6/3/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	3	98	V. Slightly Fractured	1	98	R5	F	— MB — Joint, 15°	22.6,25.9	RUN #1: GNEISS, mafic, fine grained, foliation absent, gray, blue, black, green, white, phaneritic, fresh, hard, v. sl. fractured, iron staining
amond Impregnated ————————————————————————————————————	7 8 9	65	Slightly Fractured	2	35		MW - HW	— Joint, horiz. — Intensely Fractured		RUN #2: Same as RUN #1 except (5-6.75') slightly fractured and (6.75-10') mod. weathered, hard to mod. hard, intensely fractured Driller reports drill string drop from 8.5' to 9.5'
HQ Dis	10 11 12 13	51	Slightly Fractured	3	13		MW - CW	Broken Joint, 45° MB, horiz. MB, horiz. MB, horiz. Intensely Fractured		RUN #3: (10-11.5') GNEISS, fine-grained, foliation absent, gray, blue, black, green, white, phaneritic, mod. weathered, mod. soft, sl. to mod. fractured (11.5-14.75') becomes decomposed Saprolitic GNEISS to 14.8', very soft (14.75-15') becomes moderately weathered, moderately soft
	15	83	Slightly Fractured	4	70		SW			RUN #4: GNEISS, fine-grained, foliation is absent, gray, blue, black, green, white, phaneritic, mod. weathered, mod. soft, sl. fractured
CORE RECO Length of cor core run DISCONTINU No. of fracture	re x 100	CING	R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Location Driller Hole Or	n N	Seote 1349, Iim E	Rechnical 351.700 Evans Vertical	Inv.	of Ro 5,426	ock Cı	u t Ar e	E LOG eas HQ Diamond Drill SRS	I	TEST HOL CB-28 Elevation -42.80ft Dates 6/3/10 Date 6/3/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	
M HQ	19 20									Boring Terminated at 20	<u> </u>
	21									ft.	
	23 24										
	25 26										
	27										
	3031										
	32										
	34 35										
CORE RECOVE Length of core core run DISCONTINUITY No. of fractures/F	x 100 ′ SPAC	- :ING	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 V R3 M R4 S	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By:	

							Hole No. CB-28	<u>19</u>		
DRILLI	NG LO	~ I	/ISION North Atlantic	INSTALL/	ATION delphia Di	ictrict	SHEET 1 OF 1 SHEET			
1. PROJECT			TOTAL AUGUILIO		AND TYPE C		6" Tri-Cone / HQ Diamond Bit	\dashv		
Geotechn			Cut Areas	11. DATU	M FOR ELEV		OWN (TBM or MSL)	\dashv		
2. LOCATION (⁾ 240,375.4	MLLV		10 050:0:	ATION OF PRILL	_		
3. DRILLING A		JUJ.I E	ZTU,U/U.T	12. MANU CME-		'S DESIGN	ATION OF DRILL			
Uni-Tech	Drilling (13. TOTA	L NO. OF O	VERBURDE	N DISTURBED UNDISTURBED	\dashv		
4. HOLE NO. (A file number)	As shown or	n drawing titi	le and CB-289	SAMPLES TAKEN 2 0						
5. NAME OF D	RILLER		OB-200	14. TOTAL NUMBER CORE BOXES 2						
Jim Evan				15. ELEVATION GROUND WATER 0.0 STARTED COMPLETED						
6. DIRECTION		INCLINED	PEC FROMVERT	16. DATE	HOLE	317	6/7/2010 6/7/2010			
VERTIC		INCLINED		17. ELEV	ATION TOP	OF HOLE	-45.4			
7. THICKNESS			4.0	18. TOTA	L CORE RE	COVERY FO	OR BORING 93 S	%		
DEPTH DRIL TOTAL DEP			16.5 20.5	19. GEOL	.OGIST		Steve Scott			
			CLASSIFICATION OF MATERIALS	<u> </u> S	% CORE	BOX OR	REMARKS	-		
ELEVATION	DEPTH	LEGEND	(Description)	O	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth weathering, etc., if significant)			
a 45.4	b	С	d		е	f	g	4		
-45.4	0.0		FAT CLAY (CH), wet, very soft, dark gra organic odor	ay siit,	50	S-1 0.0	WOH/24"	F		
47.0			-			2.0		F		
-47.0	1.6 —							F		
-47.9	2.5				100	S-2	17-100/5"	F		
	=		Poorly-graded GRAVEL with silt and coal (GP-GM), wet, very dense, dark gray, qu			2.0		F		
40.4		Po of Pa	quartzite gravel	uai tz ai iu				F		
-49.4	4.0		BEDROCK - See Core Log CB-289				NOTE: DRIVE SAMPLING OF SOILS	E		
							WAS COMPLETED PER ASTM D3550	"E		
							USING A 300-LB. HAMMER AND 30-INC FALL TO DRIVE A 3-IN. O.D. SPLIT	TΕ		
							BARREL SAMPLER. THE N-VALUE	E		
							REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD	E		
							PENETRATION TEST N-VALUE PER	E		
							ASTM D1586.	E		
	_							F		
								F		
								F		
	=							E		
								E		
	_							E		
								E		
								E		
	_=							E		
								F		
	=							F		
								E		
	_							E		
								E		
								E		
								E		
								E		
	_=							E		
	=							F		
	=							F		
] =							E		
-65.9	20.5							E		
			Boring Terminated at 20.5 ft. below river	bottom.				E		
		1						E		
		1				I		F		

Proj Loca Drille	ation I er .	N358 Jim E	echnical ,865.100/ Evans Vertical	Inv.	of Ro),375	ock Co .400 Method	ut Are	E LOG eas HQ Diamond Drill SRS	!	CB-289 Elevation -45.40ft Dates 6/7/10 Date 6/7/10
Drilling Details	Orienta Debth (ft)	Core Recovery (%)		Discontinuity Spacing	R.Q.D. (%)	Intact Rock 60 Strength (psi) 60	Weathering A	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 4ft
	2 9	66	Moderately Fractured	2	40	R5	F	─ Joint, 15° ─ Joint, 15° ─ MB, 15° ─ MB, 10°	15.2	RUN #1: GNEISS, fine-grained, foliation absent, white, black, gray, phaneritic, fresh, hard, moderately fractured; quartz, biotite, trace garnet; fracture surfaces
nated ————————————————————————————————————	7 8 9 10	91	Moderately Fractured	6	71	R5	F	 Joint, horiz. MB, 20 ° Joint, 5 ° Joint, 10 ° Joint, 10 ° Joint, 10°, with 75° fracture to 11.25' 	17.1	have sl. weathering and secondary mineralization RUN #2: Same as RUN #1
——————————————————————————————————————	12 13 14 15 16	103	Moderately Fractured	4	66		F	- MB, horiz. - MB, 60° to horiz. - MB, 5° - MB, 15° Joint, 15° with connected vertical fracture to 15' Joint, horiz. - Joint, 10°		RUN #3: Same as RUN #1
	17 18 19 20	98	Moderately Fractured - Intensely Fractured	8	33		F- MW	Joint, 75° to 16.5' MB, horiz.; near vert. fracture extends to 17.6' MB, horiz. MB, horiz. MB, horiz. Joint, horiz. Joint, 65° Joints and MB's at 1 inch spacing to 20.5 ft.		RUN #4: Same as RUN #1, except moderately to intensely fractured
<u> </u>	21									Boring Terminated at 20.5 ft.
Length of co core run DISCONTINI No. of fractur	ore x 100		R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 \ R2 \ R3 M R4 S R5 \	Extremely weak < 0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: PDW

								o. CB-290
DRILLI	NG LO	~ I	/ISION	INSTALLA			SHE	
			North Atlantic		delphia Di			1 SHEETS
1. PROJECT Geotechn	ical Inv	of Rock	Cut Areas	I	AND TYPE O		HQ Diamond Bit	
2. LOCATION (MLLV		VATION SH	OWN (TBM or MSL)	
STA. N 3	54,645.7					'S DESIGNA	ATION OF DRILL	
3. DRILLING AC				CME-	750			
Uni-Tech			lo and	13. TOTA	L NO. OF O\ LES TAKEN	VERBURDE		STURBED
4. HOLE NO. (A file number)	as snown or	ı arawırıg tıtı	CB-290				0	0
5. NAME OF DE	RILLER		5 55 200		L NUMBER (
Jim Evans	S			15. ELEV	ATION GRO			TED.
6. DIRECTION				16. DATE	HOLE	517	ARTED COMPLE 6/8/2010 6/8	8/2010
⊠ VERTIC/	AL	INCLINED	DEG. FROM VERT.	17 FLEV	ATION TOP	OF HOLF	-45.9	5/2010
7. THICKNESS	OF OVERE	BURDEN	1.0		L CORE REC			98 %
8. DEPTH DRIL	LED INTO	ROCK	19.0	19. GEOL		SOVERTIC	OK BOKING	90 %
9. TOTAL DEP	TH OF HOL	.E	20.0]			Steve Scott	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	S	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss	denth
			(Description)		ERY	NO.	weathering, etc., if sign	ificant)
-45.9	0.0 —	c \// <i>/</i> \/	BEDROCK - See Core Log CB-290		е	f	9	
			BEDROCK - See Core Log CB-290					
-47.0	1.1							
								E
	=							
	=							
	=							
								E
	=							
								E
	=							E
	=							Ē
								E
	=							
	=							
								E
	=							E
	_=							E
								E
	=							E
	=							E
	_=							
								E
	_=							
								E
	_=							E
		IX(IX						E
	_=	X//X//						F
		<i> }} }</i>						E
		X//X//						E
								E
-65.9	20.0	<u> </u>	Partie a tampaire 1 1 100 5 1 1 1 1	-44				E
			Boring terminated at 20 ft. below river be	ottom.				E
	_=							F
								E
	-	1			1	1		—

Proje Loca Drille Hole	ition	N345 Jim E	echnical ,645.700/ Evans Vertical	Inv.	of Ro 2,993	ock C	ut Are	E LOG eas HQ Diamond Drill SRS		CB-290 Elevation -45.90ft Dates 6/8/10 Date 6/8/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2	50	Cobbles		0	R3	F - SW	— Multiple joints, 70°		RUN #1: Mixed lithology, cobbles overlying bedrock RUN #2: GNEISS, fine grained, black, white,
	3	95	Moderately Fractured	8	85	R6	F - SW	─ Joint, 60°─ Joint, 70°	6.6 to 31.3	gray, phaneritic, f. to sl. weathered, hard, mod. fractured; fracture surfaces are sl. to mod. weathered and contain secondary mineralization;
	5 6					R4		─ Joint, 60° ─ Joints, 45° and 70°; MB, 45°		closed fractures contain secondary mineralization
HQ Diamond Impregnated HQ	7 8 9 9 10	100	Moderately Fractured - Intensely Fractured	10	41		F - SW	MB, 20° limbs Joint, 45° Joint, 75° Joint, 60° Multiple intersecting joints, 70° and 75°	8.5	RUN #3: Same as Run #2, except pegmatitic from 5 to 7 ft and intensely fractured from 8 to 11.5 ft
	11 12 13 14 15	103	Intensely Fractured - Moderately Fractured	4	80		F - SW	Joint, 5° Joint, 5° Broken bedrock to 11.4', 75° Joint, 60° MB, 60° Joint, 35° MB, 15° MB, 5° MB, 5° MB, 5°		RUN #4: Same as Run #2, except aphanitic
	17		Moderately					— МВ, 15°		RUN #5: Same as Run #2, except aphanitic
Length of cocore run DISCONTINU No. of fracture	ore x 100	CING	R.Q.D. Sum core le	engths >		- x 100	R0 E R1 V R2 W R3 M R4 S R5 V	xtremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: Bly DDW

O'BRIEN & Project Locatio Driller Hole O	n N	Geote N345, Iim E	echnical ,645.700/ Evans Vertical	Inv.	of Ro 2,993	ock C	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-290 Elevation -45.90ft Dates 6/8/10 Date 6/8/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	
₩ P	19 20	94	Fractured	3	77		F - SW	─ Joint, 65° ─ MB, 5° ─ Joint, 75° ─ MB, 5°		RUN #5: Same as Run #2, except aphanitic (continued)	
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35									ft.	
CORE RECOVE Length of core core run DISCONTINUIT No. of fractures/f	· x 100 Y SPAC	CING	R.Q.D. Sum core le length c			- x 100	R0 E R1 V R2 W R3 W R4 S R5 V	xtremely weak	EATHERING Fresh V Slightly W Moderate W Highly V Complete C Residual	46126 PREPARED By:	

							Hole No. CB-	<u> 291</u>
DRILLI	NG LO	~ I	/ISION	INSTALLA			SHEET 1	
1. PROJECT			North Atlantic		delphia Di			ETS
	ical Inv.	of Rock	Cut Areas		AND TYPE O		HQ Diamond Bit OWN (TBM or MSL)	
2. LOCATION (Coordinates	s or Station))	MLLV	V			
3. DRILLING AG		1 359,644	4.3 E 242,040.5	12. MANU CME-		'S DESIGNA	ATION OF DRILL	
Uni-Tech	Drilling (la and	13. TOTA		/ERBURDE	N DISTURBED UNDISTURBED	
4. HOLE NO. (A file number)	As snown or	n drawing titi	e and CB-291		L NUMBER (0 : 0 ES 2	
5. NAME OF DE					ATION GROU			
Jim Evans 6. DIRECTION				16. DATE			ARTED COMPLETED	
∨ERTICA		INCLINED	DEG. FROM VERT.				6/2/2010 6/2/2010	
7. THICKNESS	OF OVERE	BURDEN	0.0		L CORE RE		-45.4	6 %
8. DEPTH DRIL	LED INTO	ROCK	20.0	19. GEOL		JOVERT FO	OR BORING 91	0 %
9. TOTAL DEP	TH OF HOL	.E	20.0				Steve Scott	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL: (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)	
a -45.4	0.0 —	c \// <i>X</i> \//	BEDROCK - See Core Log CB-291		е	f	g	
	0.0		BEDROCK - See Core Log CB-291					E
-47.0	1.6							
41.0								
								E
								E
	_							F
								F
								E
								E
								E
	_=							
								=
	_							F
								E
								E
	_=							E
								E
								E
								E
								=
								F
								E
	_=							E
								E
	_=							
								E
								E
								=
								F
	_=							E
								E
	_							E
-65.4	20.0							E
-05.4	20.0	V// <i>X</i> V/	Boring Terminated at 20 ft. below river b	ottom.				E
								F
								F
		1						⊨

Loc Drill	ation	N359 Jim l	echnical 0,644.300/ Evans Vertical	Inv.	of Ro 2,040	ock C	ut Are	E LOG eas HQ Diamond Drill SRS		CB-291 Elevation -45.40ft Dates 6/2/10 Date 6/2/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2 3	77	Intensely Fractured	4	0		sw	Intensely fractured zone to 3' — Joint, 75° — Joint, 75° Joint, 75° Joint, 15° — MB, 75°		RUN #1: GNEISS, fine grained, 75° foliation, white, black, gray, phaneritic, sl. weathered, mod. hard, intensely fractured; fractured surfaces sl. to mod. weathering
nated	4 5 6 7 8	100	Moderately Fractured - Intensely Fractured	6	40	R4	- SW	 Joint, 75° Multiple joints to 4.5', 60° MB, 60° Joint, 75° Joint, 75° Joint, 75° Joint, 75° Joint, 75° 	11.5	RUN #2: Same as Run #1, except mod. to intensely fractured with pegmatite (plagioclase, muscovite, biotite, quartz) on 60° angle, sub-orthoganol to foliation from 6.17 to 6.5
——————————————————————————————————————	9 10 11	100	Slightly Fractured	5	61		sw	- Joint, 60° - MB, 55°; Joint, 55° - Multiple joints to 11.5', 75° - MB, 60°		RUN #3: Same as Run #2, except slightly fractured
	114	100	Unfractured	0	100		SW			RUN #4: Same as Run #2, except unfractured
CORE REC Length of core rur DISCONTIN No. of fractu	x 10 IUITY SPA		R.Q.D. Sum core le			- x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Locatio Driller Hole O	n N	Geoto N359 Jim E	Rechnical ,644.300/ Evans Vertical	Inv.	of Ro 2,040	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-29' Elevation -45.40ft Dates 6/2/10 Date 6/2/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	
HQ H	19 20	100	Slightly Fractured	1	67		SW	− MB, 20° ∼ MB, 45° MB, 45° Joint, horiz.		RUN #5: Same as Run #2, except slightly fractured	
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35									ft.	
Length of core core run DISCONTINUIT No. of fractures/F	x 100 Y SPAC	CING	R.Q.D. Sum core le length c			- x 100	R0 E R1 V R2 V R3 M R4 S R5 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	Fresh Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By:	

							Hole No. CB-292	<u>2</u>	
DRILLI	NG LO	•	/ISION North Atlantic	INSTALLA Phila	ATION delphia Di	ietrict	SHEET 1 OF 1 SHEETS		
1. PROJECT		<u> </u>	NOTET AUGITUS		AND TYPE C		6" Tri-Cone / HQ Diamond Bit	4	
Geotechn			Cut Areas	11. DATU	M FOR ELEV		OWN (TBM or MSL)	1	
2. LOCATION () 7.6 E 242,541.6	MLLV		10 DEC: 2: :	ATION OF PRILL	4	
3. DRILLING AG	GENCY		1.U L 242,041.U	12. MANU CME-		'S DESIGN	ATION OF DRILL		
Uni-Tech 4. HOLE NO. (A			le and	13. TOTA SAMP	L NO. OF O	VERBURDE	EN DISTURBED UNDISTURBED 2 0		
file number)		r arawing aa	CB-292	14. TOTAL NUMBER CORE BOXES 2					
5. NAME OF DE Jim Evans				15. ELEV		1			
6. DIRECTION				16. DATE	HOLE	ST	ARTED COMPLETED		
∨ERTICA	AL	INCLINED	DEG. FROM VERT.		ATION TOP	OE HOLE	6/2/2010 6/2/2010 -45.7	-	
7. THICKNESS	OF OVERE	BURDEN	3.0				-45.7 OR BORING 98 %	_	
8. DEPTH DRIL			17.5	19. GEOL				Ή	
9. TOTAL DEP	TH OF HOL	.E	20.5		N 0005		Steve Scott	_	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	S	% CORE RECOV-	BOX OR SAMPLE	(Drilling time, water loss, depth		
а	b	С	(Description)		ERY e	NO. f	weathering, etc., if significant)		
-45.7	0.0		Poor-graded GRAVEL with silt and sand	1 ,	67	S-1	26-32-19-38	F	
-47.0	1.3		(GP-GM), wet, very dense, dark gray, file coarse grained gravel, some fine to coar	ne to se sand		0.0 2.0	N = 51	E	
-47.0	1.5							E	
	=				100	S-2	_ 18-100/4"	F	
-48.5	2.8	000				2.0		E	
			BEDROCK - See Core Log CB-292			2.8	1	E	
	=							E	
							NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550	E	
							USING A 300-LB. HAMMER AND 30-INCI	HE	
							FALL TO DRIVE A 3-IN. O.D. SPLIT BARREL SAMPLER. THE N-VALUE	E	
		XXX					REPORTED ON THE LOGS IS NOT	F	
							EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER	E	
							ASTM D1586.	E	
								E	
	Ξ							E	
								E	
								E	
								E	
								E	
	=							E	
								E	
	_							F	
	Ξ							E	
								E	
	_							F	
								E	
								E	
								E	
	_=							E	
								E	
								E	
								F	
	=							F	
								E	
	=							É	
								E	
-66.2	20.5 =							F	
			Boring Terminated at 20.5 ft. below river	bottom.				E	
								F	
Ī		1				1		\vdash	

Loc Dril	ject cation ler e Orier	N: Ji	360, im E	echnical ,097.600/ vans Vertical		,541	-	d	eas HQ Diamond Drill SRS	ı	CB-292 Elevation -45.70ft Dates 6/2/10 Date 6/2/10
Drilling Details	(#) 41 ~ 0	Deptin (π)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 3ft
	- t	5	95	Moderately Fractured - Intensely Fractured	10	24		SW	Broken to 3.25' Joint, 10° Joint, 30° MB, 45° Joint, 5° Joint, 5° MB, horiz. Multiple joints to 4.92', 30° Joint, 30° MB, 75° with connected MB, 80° to 6'		RUN #1: GNEISS, fine grained, 40° foliation, white, black, gray, phaneritic, sl. weathering, mod. hard, mod. to intensely fractured; fractured surfaces are sl. weathered, iron staining present
d Impregnated ————————————————————————————————————	7 8 100 100 111 11		100	Moderately Fractured - Intensely Fractured Unfractured	6	80		SW - F	MB, 5° to 6.17' Joint, 10° 15° Joint, 30° Joint, 45° MB, 30° Joint, 60° with connected joint, horiz. to 9.083' MB, horiz. Multiple MB to 11.67', horiz.		
HQ Diamond Ir	1 1 1	2 3 4 5	90	Unfractured	0	86		F	and 90° - MB, 15° - MB, 5° - MB, 45° - MB, horiz. MB, 25° with connected MB,		RUN #2: Same as RUN #1, except high angle foliation, fresh, hard, unfractured
	1 1	7 8 9	108	Unfractured	0	100		F	horiz. to 16.25 — MB, horiz. — MB, horiz. — MB, 10°		Boring Terminated at 20.5 ft.
CORE REC Length of core rui DISCONTIN	ore x 1	100 PACII	NG	R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 V R3 M R4 S	xtremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

								H	ole No. CB-	<u> 293</u>	
DRILLII	NG LOG	١ ٠	ISION		INSTALLA				SHEET 1		
1. PROJECT		<u> </u>	North Atlanti	С	-	delphia Di		0" To: 0 / 110 I	OF 1 SHE	ETS	
	ical Inv. c	of Rock	Cut Areas			AND TYPE O		6" Tri-Cone / HQ [OWN <i>(TBM or MSL)</i>	Diamond Bit		
2. LOCATION (Coordinates	or Station)		MLLV		VATION SIT	OVVIN (TBINI OF INISE)			
		360,73	5.4 E 243,6	693.6	-		'S DESIGNA	ATION OF DRILL			
3. DRILLING AG Uni-Tech I		o Inc			CME-		(500) 1005	N. DIOTUBBER	LINIDIOTI IDDED		
4. HOLE NO. (A			le and			L NO. OF O' LES TAKEN		N DISTURBED 8	UNDISTURBED 0		
file number)				CB-293	14 TOTA	L NUMBER (CORF BOX		:		
5. NAME OF DR			•			ATION GRO		·		_	
Jim Evans 6. DIRECTION 0					16 DATE LIQUE STARTED COMPLETED						
VERTICA		INCLINED		DEG. FROM VERT.	16. DATE	HOLE	:	5/27/2010	5/27/2010		
7. THICKNESS				16.0	17. ELEVATION TOP OF HOLE -48.1						
8. DEPTH DRIL				5.0	18. TOTA	L CORE RE	COVERY FO	OR BORING	93	3 %	
9. TOTAL DEPT					19. GEOL	OGIST		Stave Coett			
9. TOTAL DEPT	n of note		CLAS	21.0 SSIFICATION OF MATERIAL	<u> </u>	% CORE	BOX OR	Steve Scott	ARKS	_	
ELEVATION	DEPTH	LEGEND	CLAS	(Description)	5	RECOV- ERY	SAMPLE NO.	(Drilling time, w	ater loss, depth c., if significant)		
а	b	С		d		e	f		3., ii sigriincarit)		
-48.1	0.0	ШШ	Elastic SILT	with sand (MH), wet, very s	oft, very	100	S-1	WOH/24"		F	
	耳		little fine sand	10YR 2/1) silt with little pead increasing percentages w	ıı varvıng, vith depth		0.0 2.0	N = WOH		E	
	\exists			J. J.						E	
	-=					100	S-2	 WOH/18" - 17		E	
		ШШ				100	2.0	N = WOH		E	
	=	ШШ					4.0			F	
-52.1	4.0	ШШ								E	
02.1				GRAVEL with silt and sand		75	S-3	20-15-14-15			
				et, medium dense, dark gra ine to coarse sub-rounded,	ay (10YR		4.0 6.0	N = 29			
			sub-angular,	mixed lithology) with some	fine to		0.0			F	
	=		1	rounded sand and little silt							
	\exists		with cobbles			71	S-4 6.0	12-13-14-11 N = 27		E	
	_=	N.L.					8.0	N - 21			
	\exists									E	
	===					92	S-5] 12-8-9-11		E	
	\equiv					32	8.0	N = 17		E	
							10.0			E	
-58.1	10.0									F	
		70		GRAVEL with sand (GW),		46	S-6	5-7-8-6		E	
	_=	HO	medium dens	se, dark gray (10YR 4/1) gr b-rounded, sub-angular, m	avel (fine		10.0 12.0	N = 15			
		•	lithology) with	n some fine to coarse, sub-			12.0				
	===		sand and trad	ce silt							
	\exists		•			33	S-7 12.0	4-5-5-8 N = 10		E	
	=	.					14.0			E	
	\exists									E	
	→		with cobbles			100	S-8	4-6-38-50/1"		F	
	\exists						14.0	N = 44		F	
-63.7	15.6	70.	1				15.6			E	
55.7			BEDROCK -	See Core Log CB-293				1		E	
	\Rightarrow							NOTE: DRIVE SAMI			
	=======================================	$\langle \langle $	1					WAS COMPLETED USING A 300-LB. HA			
	\Rightarrow		1					FALL TO DRIVE A 3	IN. O.D. SPLIT	E	
	\rightarrow	M/M	\$					BARREL SAMPLER. REPORTED ON THE		F	
	\exists		1					EQUIVALENT TO TH	IE STANDARD	E	
	\rightarrow							PENETRATION TES ASTM D1586.	I IN-VALUE PER	F	
	\Rightarrow		4							E	
		//>>//	}							E	
-69.1	21.0									E	
	=		Boring Termi	nated at 21 ft. below river b	oottom.					F	
ENC EODM						PRO IECT			HOLENO	<u></u> E	

O'BRIEN & Project Locatio Driller Hole O	n N	Geoto N360, Iim E	echnical ,736.400/ Evans Vertical	Inv.	of Ro 8,693	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-293 Elevation -48.10ft Dates 5/27/10 Date 5/27/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 16ft
F—— HQ Diamond Impregnated ——► F——————————————————————————————————	17 18 19 20	93	Slightly Fractured	3	80		F	_ Joint, 60° with horiz. MB at 17.4' and horiz. joint at 17.7' — MB, horiz. Joint, horiz.		RUN #1: GNEISS, fine grained, 62° foliation, black, white, gray, phaneritic, fresh, hard, sl. fractured; biotite, quartz, muscovite; fracture surfaces are sl. weathered
	21 22 23 24 25 26 27 28 29 30 31 32 33									Boring terminated at 21 ft.
CORE RECOVE Length of core core run DISCONTINUIT' No. of fractures/f	· x 100 Y SPAC	CING	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 V R3 M R4 S R5 V	Extremely weak < 0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

							H		CB-294
DRILLI	NG LOG	- 1	/ISION North Atlantic	INSTALLA Dhila		etrict		SHEET	1
1. PROJECT		1 1	NOTHE ALIMITIC		delphia Di AND TYPE O		HQ Diamond Bit	OF 1	SHEETS
Geotechn	nical Inv. of I			11. DATU	M FOR ELE\		OWN (TBM or MSL)		
			9.5 E 244,665.5	MLLV 12. MANU		'S DESIGNA	ATION OF DRILL		
3. DRILLING A			•	CME-	750			LINDIOTU	DDED
	As shown on drav			13. TOTA SAMP	L NO. OF OV LES TAKEN	VERBURDE	n disturbed 0	UNDISTU	0 KRED
5. NAME OF D	DILLED		CB-294	14. TOTA	L NUMBER (CORE BOX	≣S 3		
Jim Evan				15. ELEV	ATION GROU				
6. DIRECTION				16. DATE	HOLE	STA	ARTED C 5/27/2010	OMPLETED 5/27/2	
				17. ELEV	ATION TOP (OF HOLE	-44.0	0/21/2	.010
	OF OVERBURE		0.0	18. TOTA	L CORE REC	COVERY FO			98 %
	LLED INTO ROC	K	20.2	19. GEOL	OGIST				
9. TOTAL DEP	TH OF HOLE		20.2		% CORE	BOX OR	Steve Scott	ARKS	
ELEVATION	DEPTH LEG	SEND	CLASSIFICATION OF MATERIALS (Description)	5	RECOV- ERY	SAMPLE NO.	(Drilling time, wa weathering, etc.	ater loss, dei	oth
а	b	С	d		e	f f	weathering, etc		IL)
-44.0	0.0		BEDROCK - See Core Log CB-294						
-47.0	3.0								
		\gg							
		\gg							
		\gg							
									-
									<u> </u>
		$\times / / $							
									<u> </u>
		\gg							
									F
									E
									Ė
-64.2	20.2	\times / \rangle							E
	= =		Boring Terminated at 20.17 ft. below rive	er					
			bottom.						
1			<u>l</u>		L	I			

O'BRIEN Proje Locat Driller Hole	ct (Geot N361 Jim E	echnical ,639.500, Evans Vertical	Inv.	of Ro I,665.	ck C	ut Are	E LOG eas HQ Diamond Drill SRS	 	CB-294 Elevation -44.00ft Dates 5/27/10 Date 5/27/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 1 2	100	Moderately Fractured	3	34		F - SW	Joint, horiz. with 55°, joint to 0.6' MB, 55° MB, 55° Joint, horiz. MB, 35° Joint, 40° MB, 75°		RUN #1: GNEISS, fine grained, 60° foliation, black, white, fresh to sl. weathered, mod. hard, mod. fractured; fracture surfaces are sl. to mod. weathered
	3 4 5 6 7	100	Moderately Fractured	6	40	R4 R4	F - SW	MB, 40° MB, 20° MB, 60° Multiple MB's to 4, 60° to 35° — MB, 45° — Joint, 45° — Joint, 5° — MB, 75° — MB, 45° — MB, horiz. Joint, 35°	10.0,13.	RUN #2: GNEISS, Same
——————————————————————————————————————	9 10 11	100	Slightly Fractured	2	75		F - SW	- MB, 25° - Joint, horiz MB, 50° - MB, 50° - MB, 35° - MB, 35° - MB, 50° - Joint, 58° - MB, 5°		RUN #3: GNEISS, Same as Run #1, except slightly fractured
	13 14 15 16	100	Slightly Fractured	3	85		F - SW	— MB, 5° — MB, 45° — Joint, 60° — Joint, 45° — Joint, horiz. — MB, horiz.		RUN #4: GNEISS, Same as Run #3
CORE RECO Length of cor core run DISCONTINU No. of fracture	e — x 100 ITY SPAC	CING	R.Q.D. Sum core le length c	engths >		x 100	R0 E R1 V R2 V R3 M R4 S	xtremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: Bly DDW

O'BRIEN & Project	(Geot	echnical	Inv.	of Ro	ock C		E LOG		TEST HOLE CB-294	
Locatio Driller Hole O		Jim E	,639.500 Evans Vertical	/E244		.500 Method Logged		HQ Diamond Drill SRS	ı	Elevation -44.00ft Dates 5/27/10 Date 5/27/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	Tooto
HQ —	19	86	Ufractured	0	47		F - SW	— МВ, 60°		RUN #5: GNEISS, Same as Run #3, except unfractured (continued)	
₩ -	20									Boring Terminated at 20.1	t
-	21									ft	
-	22										
-	23										
-	24										
-	25										
	26										
	27										
-											
——————————————————————————————————————	28										
-	29										
	30										
	31										
	32										
-	33										
	34										
	35										
CORE RECOVE	RY		R.Q.D.				ROC	K STRENGTH (ksi) WEA	THERING	FILE No.	1
Length of core	x 100		Sum core le			x 100	R0 E: R1 V	xtremely weak <0.15 F ery weak 0.15 - 0.7 SW	Fresh Slightly	46126	
core run DISCONTINUIT No. of fractures/F	Y SPAC	CING	length o	of core ru	n		R2 W R3 M R4 S	/eak 0.7 - 3.5 MW ledium strong 3.5 - 7.0 HW trong 7.0 -14.5 CW	Moderate Highly Complete	PREPARED By:	_
_								ery strong 14.5 - 30.0 RS xtremely strong >30.0	Residual	SHEET 2 of	2

							Hole No. CB-29	<u>5</u>
DRILLI	NG LO	• I	ISION North Atlantic	INSTALLA		iotriot	SHEET 1	
1. PROJECT		-	North Atlantic		delphia Di AND TYPE C		OF 1 SHEETS	S
	ical Inv.	of Rock	Cut Areas				IOWN (TBM or MSL)	-
2. LOCATION (MLLV	V			
3. DRILLING AG		1 362,05	7.4 E 245,239.0	12. MANU CME-		'S DESIGN	ATION OF DRILL	
Uni-Tech	Drilling (VERBURDE	EN DISTURBED UNDISTURBED	-
4. HOLE NO. (A file number)	As shown or	n drawing titl		SAMP	LES TAKEN		1 0	
5. NAME OF DE	RILLER		CB-295	14. TOTA	<u> </u>			
Jim Evans				15. ELEV	ATION GRO			
6. DIRECTION				16. DATE	HOLE	STA	ARTED COMPLETED 5/28/2010	
		INCLINED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	-45.3	
7. THICKNESS			2.0	18. TOTA	L CORE RE	COVERY FO	OR BORING 99 %	6
8. DEPTH DRIL			18.0	19. GEOL	OGIST			
9. TOTAL DEP	TH OF HOL	.E	20.0		% CORE	BOX OR	Steve Scott REMARKS	4
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	5	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth weathering, etc., if significant)	
а	b	С	d		е	f	g	
-45.3	0.0		Poor-graded GRAVEL with silt and sand (GP-GM), wet, medium dense, light brown	wn aravel	67	S-1 0.0	7-8-44-80 N = 52	E
-46.3	1.0 —		(fine to coarse, sub-rounded) with some			2.0		\vdash
-47.0	1.7	175	coarse sub-rounded sand Saprolitic GNEISS, wet, very dense, black	ok white				E
-47.3	2.0 =	XXXV	gray/green, crumbles to coarse sand siz				NOTE: DRIVE SAMPLING OF SOILS	E
	_=		particles]			WAS COMPLETED PER ASTM D3550 USING A 300-LB. HAMMER AND 30-INC	Ŀ
			BEDROCK - See Core Log CB-295				FALL TO DRIVE A 3-IN. O.D. SPLIT	"E
	_=						BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT	E
							EQUIVALENT TO THE STANDARD	E
	_						PENETRATION TEST N-VALUE PER ASTM D1586.	E
							ACTIVID 1980.	
								E
	_=							
								E
	_=							\vdash
								E
	_							F
								F
								E
	_=							E
								E
								E
								Ε
	=							Ε
	_=							E
								E
								\vdash
								E
								E
								E
	_=							E
								E
	_							F
-65.3	65.3 20.0							E
55.5	Boring terminated at 20 ft. below river bottom.							E
								E
								E
		1			1	I		F

Proje Locat Driller Hole (ion N	N362 Jim E	echnical ,057.400/ Evans Vertical	Inv.	of Ro 5,239	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS		CB-295 Elevation -45.30ft Dates 5/28/10 Date 5/28/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 2ft
	3 4 5 6 7	100	Slightly Fractured	4	65	R4	F	- Joint, 55° - MB, 60° - MB, 25° MB, horiz. - Joint, 5° Joint, 5° MB, 5° Joint, 60° with 30° MB to 4.7' Joint, horiz. with 20° joint to 5.2' - MB, 20° - MB, 5°	11.1,5.5	RUN #1: GNEISS, fine grained, 50-60° foliation, white, black, gray, phaneritic, fresh, hard, sl. fractured; primarily quartz, lesser amounts of biotite and muscovite, trace garnet; mylonitic 9-11'.
iamond Impregnated ————————————————————————————————————	7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	98	Slightly Fractured	2	66		F	— MB, 5° — MB, 5° — MB, 12° — MB, 35° — MB, horiz.; MB 30° — MB, horiz. — MB, horiz. — Joint, horiz. — Joint, 5°		RUN #2: Same as RUN #1
HQ D	13 14 15 16	100	Unfractured	0	100		F	— MB, horiz. — MB, 55° — MB, 10°		RUN #3: Same as RUN #1 except unfractured
	18	100	Unfractured	0	86		F	 − MB, 50° − MB, horiz. − MB, 55° − MB, 55° − MB, 45° ► MB, 60° limbs 		RUN #4: Same as RUN #1 except unfractured Boring Terminated at 20 ft.
Length of cor core run DISCONTINUI No. of fractures	e — x 100 TY SPAC	CING	R.Q.D. Sum core le			- x 100	R0 E R1 \ R2 \ R3 M R4 S R5 \	Extremely weak <0.15 F /ery weak 0.15 - 0.7 SW /eak 0.7 - 3.5 MW /dedium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

								Hole No.	CB-296
DRILLI	NG LO	• I	VISION	INSTALLA		otrict		SHEET	1
1. PROJECT			North Atlantic		delphia Di		0! T-: 0 / 1.10	OF 1	SHEETS
	ical Inv	of Rock	Cut Areas		AND TYPE O		6" Tri-Cone / HQ OWN (TBM or MSL)	Diamond E	SIT
2. LOCATION (Coordinates	s or Station)	MLLV		ATION SIT	OWN (IBW OF WSL)		
		1 362,91	5.4 E 246,227.0	-		'S DESIGNA	ATION OF DRILL		
3. DRILLING AC Uni-Tech		o Inc		CME-					
4. HOLE NO. (/			le and		L NO. OF O\ LES TAKEN	/ERBURDE	N DISTURBED 3	UNDISTUR	
file number)	io cinovin ci	r arawing aa	CB-296	14 TOTA	L NUMBER (CORE BOX			<u>'</u>
5. NAME OF DE					ATION GROU)	
Jim Evans B. DIRECTION					COMPLETED				
DIRECTION W		INCLINED	DEG. FROM VERT.	16. DATE HOLE STARTED COMPLETED 5/26/2010 5/26/2					
				17. ELEVATION TOP OF HOLE -44.7					
7. THICKNESS			5.2	18. TOTA	L CORE REC	COVERY FO	OR BORING		93 %
8. DEPTH DRIL			15.3	19. GEOL	OGIST				
9. TOTAL DEP	TH OF HOL	.E	20.5		W CODE	BOX OR	Steve Scott	MARKS	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	SAMPLE	(Drilling time,	water loss, dept	th
а	b	С	(Description)		ERY e	NO. f	weathering,	etc., if significant g	()
-44.7	0.0		Poorly-graded GRAVEL with silt and sal		50	S-1	12-32-70-50/1"		
	=		(GP-GM), wet, very dense, medium bro (fine grained to cobbles, sub-rounded,	wn gravel		0.0 2.0	N = 102		
		Hoy	sub-angular mixed lithology), some fine	to coarse		2.0			
-46.7 -47.0	2.0 —	000	sub-rounded sand, trace silt			2.5	00.04.00.00		
-47.0	2.3		Silty, clayey SAND with gravel (SC-SM) dense, medium brown gravel (fine to co	, wet, arse	54	S-2 2.0	23-24-20-26 N = 44		
			sub-rounded, sub-angular, mixed litholo	gy),		4.0			
-48.7	4.0		some silty clay	'					
-40.7	4.0		Saprolitic, mafic GNEISS, wet, very den	se. black.	100	S-3] 11-70-50/2"		
	=		saprolitic bedrock	, 2,		4.0			
-49.9	5.2		BEDROCK - See Core Log CB-296			5.2			
	=		BEBROOK - See Core Log CB-290						
							NOTE: DRIVE SAI		
							WAS COMPLETED USING A 300-LB. I		
							FALL TO DRIVE A	3-IN. O.D. SP	LIT
	_=						BARREL SAMPLEI REPORTED ON TH		
							EQUIVALENT TO	THE STANDAR	RD
							PENETRATION TE ASTM D1586.	ST N-VALUE	PER
							7.01W 2 1000.		
	=								
	_=								
			1						
	=								
	_								
	_=								
		X//X//							
	_=								
-65.2	20.5	X// <i>X</i> X//	Boring Terminated at 20.5 ft. below rive	r hottom					
]	Borning Terminated at 20.3 It. below five	DOMOTT.					
NG FORM		<u> </u>	I		PROJECT	1	I .	HOLE	NO

Loc Dril	oject cation ller le Ori	ı N J	1362 Jim E	echnical ,915.400, Evans Vertical	Inv.	of Ro 5,227	ock C	ut Are	E LOG eas HQ Diamond Drill SRS	I	CB-296 Elevation -44.70ft Dates 5/26/10 Date 5/26/10
Drilling Details		Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 5.17ft RUN #1: GNEISS, tine
		6 7 8	78	Moderately Fractured	Multiple	0		SW - MW	MBs, spaced at 1-3.5" to 8.5'		grained, foliation absent, black, trace white, sl. to mod. weathered, mod. hard, mod. fractured, extensively mechanically broken; primarily consists of biotite - mafic gneiss; fracture surfaces are mod. weathered & contain secondary
HQ Diamond Impregnated ————————————————————————————————————		9 10 11 12 13	95	Moderately Fractured	7	35		SW - F	MB, horiz. MB, horiz. Joint, 80° MB, horiz. MB, horiz. Joint, 20°		mineralization RUN #2: Same as RUN #1, except phaneritic, 70° foliation, sl. weathered to fresh; fracture surfaces are sl. weathered and contain secondary mineralization.
HQ Dia		14 15 16 17	100	Intensely Fractured Moderately Fractured	10	63		SW - F	Joint, 30° MB, 20° Multiple joints, 5° and 45° Joint, 10° Joint, 5° Joint, 5° Joint, 5° Joint, 5°		RUN #3: Same as RUN #2, except intensely fractured between 13.5-15'
	mulmutmulmu	19 20	100		2	67		SW - F	— Joint, 30° — MB, 10° — MB, horiz. ∑.loint_80°		RUN #4: Same as RUN #2.
		21 22									Boring Terminated at 20.5 ft.
Length of core rul	core n	x 100 SPAC	CING	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 W R3 M R4 S R5 V	xtremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: PDW

							H	ole No.	<u>CB-297</u>
DRILLI	NG LO	~ I	VISION	INSTALLA Dhila		otriot		SHEET	1
1. PROJECT		- <u> </u>	North Atlantic		delphia Di AND TYPE C		HQ Diamond Bit	OF 1	SHEETS
	ical Inv	of Rock	Cut Areas				OWN (TBM or MSL)		
2. LOCATION (Coordinate	s or Station))	MLLV	V				
STA. 111 3. DRILLING A		1 364,530	0.3 E 247,929.5			'S DESIGNA	ATION OF DRILL		
3. DRILLING A		Co., Inc		CME-		/ERRI IRNE	EN DISTURBED	UNDISTU	RRED
4. HOLE NO. (SAMP	LES TAKEN	VERBORDE	DISTORBED 0		0
file number)			CB-297	14. TOTA	L NUMBER (CORE BOX	ES 2	•	
5. NAME OF D				15. ELEV	ATION GRO	JND WATE	7.7		
6. DIRECTION				16. DATE	HOLE	STA		OMPLETED	
∨ERTIC	AL	INCLINED	DEG. FROM VERT.				5/25/2010	5/25/2	2010
7. THICKNESS	OF OVERE	BURDEN	0.0		ATION TOP		-46.1		06.0/
8. DEPTH DRII	LED INTO	ROCK	20.3	18. TOTA 19. GEOL	L CORE REC	JUVERY FO	UK BUKING		86 %
9. TOTAL DEP	TH OF HOL	.E	20.3	, 10. GLUL		5	Steve Scott		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	S	% CORE RECOV-	BOX OR SAMPLE		ARKS	oth
			(Description)		ERY	NO.	weathering, et	c., if significar	nt)
-46.1	0.0 —	c \//\	d BEDROCK - See Core Log CB-297		е	f	!	g	
-47.0	0.9		5251.001. 000 0010 L0g 05-291						
									E
	=								
									F
	=								
									E
	_=								
	_								
	_=								E
									F
	_=								F
									þ
	-								E
									E
	_								E
									F
									F
	_=								þ
			1						E
		X//X//							E
									F
									F
									E
									E
	===								E
-66.4	20.3		Boring Terminated at 20.33 ft. below rive	ar .					F
	=		bottom.	5 1					F
									E
I	-	1			1	1	I		_

Proje Loca Drille Hole	ition I	N364 Jim E	echnical ,530.300 Evans Vertical	Inv. o	of Ro ,929.	ck Cı	ut Are	E LOG eas HQ Diamond Drill SRS	ı	CB-297 Elevation -46.10ft Dates 5/25/10 Date 5/25/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2	96	Intensely Fractured - Moderately Fractured	8	18	R5	F	MB, 45° Joint, horiz.; joint, 80° Multiple joints to 1', horiz. and 90° Joint, 45° Joint, 30° Joint, horiz.	17.0	RUN #1: GNEISS, fine grained, foliation absent, black, whitish gray, phaneritic, fresh, hard to very hard, intensely to mod. fractured; mafic GNEISS, very little to no
	3 4 5 6	50	Intensely Fractured	Multiple	12		SW - MW	Intensely fractured at various spacing and angles to 7.33'		quartz observed, biotite, muscovite, trace garnet, pyrite present as secondary mineral RUN #2: Same as RUN #1, except sl. to mod. weathered, mod. hard, intensely fractured throughout RUN #2; 0.5-3" fracture spacing, various angles ranging from 0-90°, mod. weathering & secondary mineralization present on fracture surfaces; biotite,
	9 10 11	96	Slightly Fractured - Moderately Fractured	12	46		SW - MW	Joint, horiz. Joint, horiz. MB, horiz. MB, 40° MB, horiz. Joint, 5° Joint, 5° Joint, 5° Joint, 30° Joint, 30° Multiple joints to 9.7', 25° Joint, 20° MB, horiz. MB, 5° MB, 40° Joint, horiz.		RUN #3: Same as RUN #2, except sl. to mod. fractured & sl. weathered; (7.33-8') is mod. weathered; quartz zone on 70° orientation from 10.5-11.5'
	13 14 15 16	100	Unfractured	0	91		F	Joint, horiz. MB, 10° Joint, horiz. with connected 40° MB to 13.6' MB, 5° MB, 30° MB, 60°		RUN #4: GNEISS, fine grained, foliation absent, black, white, gray, fresh, hard, unfractured; biotite, muscovite, quartz (1" thick quartz seams throughout RUN #3 on 70° angle)
CORE RECO Length of co core run DISCONTINU No. of fracture	ore x 100	CING	R.Q.D. Sum core le length c	engths >		x 100	R0 E R1 V R2 V R3 M	Extremely weak < 0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW	THERING Fresh Slightly Moderate Highly Complete	46126 PREPARED By:

O'BRIEN & Project Locatio Driller Hole O	on N	Geot N364 Jim E	echnical ,530.300/ Evans Vertical	Inv.	of Ro 7,929	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	1	TEST HOLE CB-297 Elevation -46.10ft Dates 5/25/10 Date 5/25/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description
₩ - HQ -	19 20	100	Unfractured	0	91		F	− MB, 45°− MB, 45°− Joint, 40°		RUN #5: Same as RUN #4. (continued)
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35									ft.
CORE RECOVE Length of core core run DISCONTINUIT No. of fractures/	- x 100 Y SPAC	CING	R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak < 0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By:

							Hole	No. CB-298			
DRILLI	NG LO	<u> </u>	DIVISION	INSTALL				SHEET 1			
1. PROJECT	110 200		North Atlantic		delphia Di			OF 1 SHEETS			
	ical Inv	of Roc	ck Cut Areas		AND TYPE O		6" Tri-Cone / HQ Diar OWN (TBM or MSL)	nond Bit			
2. LOCATION (Coordinates	s or Statio	on)	MLL		ATION SIT	OWN (IBM OF MOL)				
		1 364,8	83.1 E 248,788.1	_		'S DESIGN	ATION OF DRILL				
3. DRILLING AC Uni-Tech		Co Inc	•	CME		/EDDLIDDE	N: DISTURBED : UI	NDISTURBED			
4. HOLE NO. (A					PLES TAKEN		IN DISTURBED OI	0 NDISTORBED			
file number)			CB-298	14. TOTA	AL NUMBER (CORE BOX	ES 1				
5. NAME OF DE Jim Evans				15. ELEV	15. ELEVATION GROUND WATER 0.0						
6. DIRECTION				16. DATE	HOLE	ST	ARTED COM	PLETED 5/25/2010			
∨ERTICA	AL	INCLINE	ED DEG. FROM VER	т. —	5/25/2010						
7. THICKNESS	OF OVERE	BURDEN	11.8				-45.1				
8. DEPTH DRIL	LED INTO	ROCK	9.3		AL CORE REC	COVERY FO	OR BORING	70 %			
9. TOTAL DEP			21.0	19. GEOI	LOGIST	9	Steve Scott				
ELEVATION.	DEDTU	LEOEN	CLASSIFICATION OF MATERIA	ALS	% CORE	BOX OR	REMARK				
ELEVATION	DEPTH	LEGEN	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, water weathering, etc., if				
a -45.1	0.0 —	C	d Well-graded GRAVEL with silt and sa	nd	e 50	f S-1	g 0 22 20 26				
-4 ∪.1	0.0	. 6.	(GW-GM), wet, very dense, brownish	light gray	58	0.0	8-23-38-26 N = 61				
			gravel (fine to coarse, sub-rounded, n lithology) with some fine to coarse sul	nixed		2.0					
-47.0	1.9		sand	J-1 Out lu c u							
		A			100	S-2	8-19-16-28				
-48.1	3.0 =	1.9				2.0 4.0	N = 35				
	=		Silty SAND (SM), wet, dense to very			4.0					
			medium dark gray, micaceous silty satrace fine to coarse sub-rounded gray	na with el							
			::		100	S-3 4.0	23-24-33-11 N = 57				
	_=		섞			6.0	14 - 57				
-51.1	6.0 —		Elastic SILT (MH), wet, medium dens	o dark grav	50	S-4	_ 4-5-8-8				
			(10YR 4/1), clayey silt with micaceous	s, trace	30	6.0	N = 13				
	=		peat and fine sand varving and trace to coarse sub-rounded gravel of mixed li	ine to		8.0					
			Coarse sub-rounded graver or mixed in	ulology			5-7-6-8				
					42	S-5					
						8.0 10.0	N = 13				
						10.0					
	=										
	I =				76	S-6 10.0	7-11-20-50/3" N = 31				
-56.1	11.0 —		Saprolitic GNEISS, wet, dense, quarta	z hiotito	-	11.8					
-56.9	11.8 =		muscovite, garnet, white, black, greer	ish gray,							
			fine to coarse sand sized particles wh	en crushed			NOTE: DRIVE SAMPLIN	IG OF SOILS			
	\equiv		BEDROCK - See Core Log CB-298				WAS COMPLETED PER	ASTM D3550			
			222.133.1 300 3010 Log 3D-290				USING A 300-LB. HAMM FALL TO DRIVE A 3-IN.				
	=						BARREL SAMPLER. TH	IE N-VALUE			
							REPORTED ON THE LO				
	=						PENETRATION TEST N-				
	\equiv						ASTM D1586.				
			\bowtie								

	=										
	_ =		\rtimes								
-66.1	21.0 =		X								
			Boring Terminated at 21 ft. below rive	r bottom.							
NC FORM					PRO IECT			HOLENO			

Projec Locati	on N	1364	echnical ,883.100/	Inv.	of Ro	ock C			I	CB-298
Driller Hole (ل Drientat		vans Vertical			Method Logged		HQ Diamond Drill SRS		Dates 5/25/10 Date 5/25/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 11.75ft RUN #1: GNEISS, fine
	12	100	Moderately Fractured	6	70		MW - SW	Joint, horiz. Joint, horiz. Joint, horiz. Joint, 30° limbs Joint, horiz. Joint, 40° MB, horiz.		grained, 70° foliation, white, black greenish-gray, phaneritic, mod. to sl. weathered, mod. hard, mod. fractured; quartz, biotite, muscovite, trace garnet (note smoky quartz
—— HQ Diamond Impregnated —— HQ —————————————————————————————————	15	55	Moderately Fractured - Slightly Fractured	4	33		SW	Joint, 40° Joint, horiz. MB, horiz. MB, 15° Joint, 45° Joint, horiz.		pegmatite 11.75-11.83'); fracture surfaces are sl. to mod. weathered with secondary mineralization RUN #2: GNEISS, fine grained, 80° foliation, white, black, gray, phaneritic, sl. weathered, mod. hard, mod. to sl. fractured; quartz, biotite, muscovite, trace garnet; (17-19') soft zone, not recovered in core
_	20	75	Unfractured	0	75		SW			RUN #3: Same as RUN #2, except unfractured.
-	22 23 24 25 26									Boring Terminated at 21 ft.
CORE RECOV Length of core core run			R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW	THERING Fresh Slightly Moderate Highly	46126

		,		I nue =				Hole No.	CB-299	
DRILLII	NG LO	•	/ISION	INSTALLA Dhila		etriot		SHEET	1	
1. PROJECT		<u> </u>	North Atlantic		delphia Di AND TYPE O		6" Tri-Cone / HC	OF 1		
	ical Inv.	of Rock	Cut Areas				OWN (TBM or MSL)	Diamond	DIL	
2. LOCATION (Coordinates	s or Station)	MLLV		, THON OH	CTTT (I DIVI OI IVIOL)			
		I 364,97	5.9 E 249,443.4	-		'S DESIGNA	ATION OF DRILL			
3. DRILLING AC Uni-Tech		o Inc		CME-						
4. HOLE NO. (A			le and		L NO. OF O\ LES TAKEN	/ERBURDE	N DISTURBED 6	UNDISTU	RBED)	
file number)	io di lovii i or	aranning aa	CB-299	14 TOTA	L NUMBER (CORE BOX	_:			
5. NAME OF DF					ATION GROU		_	0		
Jim Evans				13. ELEV	ATION GROU		ARTED	COMPLETED		
6. DIRECTION		INCLINED	DEC EDOMVEDT	16. DATE HOLE 5/24/2010 5/24						
		INCLINED		17. ELEVATION TOP OF HOLE -48.0						
7. THICKNESS			10.3	18. TOTAL CORE RECOVERY FOR BORING						
8. DEPTH DRIL			10.2	19. GEOL	.OGIST					
9. TOTAL DEPT	TH OF HOL	.E	20.5		N 0005		Steve Scott	MADICO		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	BOX OR SAMPLE	(Drilling time,	MARKS water loss, dep	oth	
а	b	С	(Description) d		ERY e	NO. f	weathering,	etc., if significar	nt)	
-48.0	0.0 —	متهكما	Poorly-graded GRAVEL with silt and sar	nd	71	S-1	8-23-49-80	g		
·		PO 02/14	(GP-GM), wet, very dense, grayish brow	vn gravel		0.0	N = 72			
		139H	(fine to coarse, sub-rounded, sub-angulation) with some fine to coarse, sub-			2.0				
			sand and little silt	rouriaca						
	=	16 d/12	Quartzite cobble in spoon tip		71	S-2	23-41-49-53			
		62 P 1				2.0 4.0	N = 90			
		8,010				4.0				
		SHO.								
	=	609			63	S-3	30-33-38-32			
	_=	6 gy				4.0 6.0	N = 71			
						0.0				
-54.3	6.3		,			_				
-04.0	0.5		Well-graded SAND with gravel (SW), we	et, dense,	- 58	S-4 6.0	13-17-28-21 N = 45			
	_=		greenish dark gray, micaceous, fine to c	coarse		8.0	N - 45			
			sand with some sub-rounded gravel con quartz and some angular gravel consitin							
-56.0	8.0 —		weathered greenish schistic gneiss	.g 0. /	07	0.5	42.0.47.20			
	=		Saprolitic, foliated GNEISS, wet, mediur		67	S-5 8.0	13-9-17-28 N = 26			
			quartz, biotite, muscovite, chlorite, white green, fine to coarse grained sand sized			10.0	-			
			when crushed between fingers	i particais						
-58.3	10.3		-		101	S-6	100/4"			
			BEDROCK - See Core Log CB-299			10.0	100/1			
						10.3				
							NOTE: DRIVE SAI	MPLING OF S	SOILS	
							WAS COMPLETED			
	=	X//X//	1				USING A 300-LB. I FALL TO DRIVE A			
	_=						BARREL SAMPLE	R. THE N-VA	LUE	
							REPORTED ON THE			
	=						PENETRATION TE			
							ASTM D1586.			
	_=	Y/////								
	=									
		X//X//								
		<i> </i>								
	_=	X//X//								
	_=									
		K/ <i>X</i> (/)								
-68.5	20.5		Paring Torminated at 20 5 ft halous sixo	r hottom	-					
			Boring Terminated at 20.5 ft. below river	DOLLOTTI.						
NG FORM	_				PROJECT			HOLE		

L	Projec ∟ocatio Driller	t (Geot N364 Iim E	echnical ,975.900 Evans Vertical	Inv.	of Ro ,443.	ock C	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-299 Elevation -48.00ft Dates 5/24/10 Date 5/24/10
Drilli Deta	U	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 10.5ft RUN #1: GNEISS, fine
A A		11	62	Ufractured	0			HW - CW	− MB, horiz.∼ MB, horiz.− MB, horiz.		grained, est. 70° foliation, white, black, green, phaneritic, intensely weathered to decomposed, very soft, unfractured, multiple MBs; quartz, biotite, muscovite
— HQ Diamond Impregnated ————————————————————————————————————	- - - - -	13 14 15 16	100	Ufractured - Slightly Fractured	2	81		SW	 MB, horiz. Joint, 15° MB, horiz. MB, 15° MB, horiz. MB, 30° MB, 30° Joint, horiz. MB, horiz. MB, MB, 20° 		& green mineral present RUN #2: (12.5-13') Same as RUN #1; (13-17.5') GNEISS, fine grained, foliation not discernable, white, black, gray, light green, phaneritic, sl. weathered, mod. hard to hard, sl. Fractured; quartz, biotite, muscovite, green mineral, pyrite
	- -	18 19 20	100	Slightly Fractured	0	78		SW	MB, horiz. MB, horiz. MB, horiz. MB, 5° MB, 5° MB, 5° MB, boriz		RUN #3: Same as RUN #2
	_	21									Boring Terminated at 20.5 ft.
	_	23									
	_	25									
	-	26 27									
CORE R Length core DISCON No. of fra	of core run	ERY - x 100	CING	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 V R3 M R4 S	xtremely weak < 0.15 F /ery weak 0.15 - 0.7 SW /eak 0.7 - 3.5 MW /ledium strong 3.5 - 7.0 HW /etrong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

							H	ole No.	CB-300
DRILLI	NG LO	~ I	VISION	INSTALLA Dhila		otriot		SHEET	1
1. PROJECT		- <u> </u>	North Atlantic		delphia Di AND TYPE O		HQ Diamond Bit	OF 1	SHEETS
	ical Inv	of Rock	Cut Areas				OWN (TBM or MSL)		
2. LOCATION (Coordinate	s or Station))	MLLV	V				
STA. 109		1 365,624	4.6 E 249,437.7			'S DESIGNA	ATION OF DRILL		
3. DRILLING AC		Co., Inc		CME-		/ERRI IDDE	N DISTURBED	UNDISTU	RRED
4. HOLE NO. (A				SAMP	LES TAKEN	* LIYDOKDE	O O		0
file number)			CB-300	14. TOTA	L NUMBER (CORE BOX	ES 2	•	
5. NAME OF DI Jim Evans				15. ELEV	ATION GROU	JND WATE	R 0.0		
6. DIRECTION				16. DATE	HOLF	STA		OMPLETED	
∨ERTICA	AL] INCLINED	DEG. FROM VERT.				5/20/2010	5/20/2	2010
7. THICKNESS	OF OVER	BURDEN	0.0		ATION TOP		-42.7		20.04
8. DEPTH DRIL	LED INTO	ROCK	20.5	18. TOTA 19. GEOL	L CORE REC	COVERY FO	OR BORING		98 %
9. TOTAL DEP	TH OF HOL	E	20.5	. 19. GEOL	.OGIST	9	Steve Scott		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	BOX OR SAMPLE	REMA	ARKS	n4h
			(Description)		ERY	NO.	(Drilling time, w weathering, etc	c., if significar	nt)
-42.7	0.0 —	c //</td <td>d BEDROCK - See Core Log CB-300</td> <td></td> <td>е</td> <td>f</td> <td>(</td> <td>9</td> <td></td>	d BEDROCK - See Core Log CB-300		е	f	(9	
-74.1	0.0		PEDICOCK - See Cole Log CB-300						
	=								
									E
	_=								E
-47.0	4.3								E
-47.0	4.3								E
									E
	=								=
									E
									E
									E
	=								E
	_=								E
									E
	=								F
	=								F
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							E
			1						E
	=								F
									E
		X//X//							F
	=								F
									E
	=								F
									F
									E
	=								F
	_=	X//X//							E
									E
									F
-63.2	20.5	<i> </i>	Boring Terminated at 20.5 ft. below river	hottom					E
			Borning Terminiated at 20.5 ft. below fivel	DOLLOTTI.					E
									E
	ı	1	1			1	1		

Proje Loca Drille Hole	tion N	N365 Jim E	echnical ,624.600/ Evans Vertical	Inv.	of Ro),437.	ck C	ut Are	E LOG eas HQ Diamond Drill SRS		CB-300 Elevation -42.70ft Dates 5/20/10 Date 5/20/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2 3	94	Moderately Fractured	7	70	R2	F - SW	 Joint, 10° Joint, 56° Joint, horiz. Joint, horiz.; joint, 75° Joint, horiz. MB, 15° MB, 30° Joint, 5° 	3.3,5.8	RUN #1: GNEISS, fine grained, 80° foliation, black, white, gray, phaneritic, fresh to sl. weathered, hard, moderately fractured; biotite & quartz are predominant; fracture surfaces are sl. weathered.
amond Impregnated ————————————————————————————————————	5 6 7 8 9	96	Moderately Fractured	10	65		F - SW	 Joint, 5° Joint, 7° Joint, 5 MB, horiz. MB, 35° Mutiple joints to 9.5′, 5° 		RUN #2: Same as RUN #1, except foliation is 85°, fracture zone at 9' is mod. Weathered
HQ Diamo	10 11 12 13	100	Unfractured	0	100		F	 MB, horiz. MB, horiz. MB, horiz. MB, horiz. MB, horiz. MB, 5° MB, 5° 		RUN #3: Same as RUN #1, except foliation is 65°,fresh, unfractured
	15	100	Unfractured	0	100		F	— МВ, 5° — МВ, 5° — МВ, 10°		RUN #4: Same as RUN #3
CORE RECO Length of co core run DISCONTINU No. of fracture	re x 100	CING	R.Q.D. Sum core le length c			× 100	R0 E R1 V R2 W R3 M R4 S R5 V	xtremely weak < 0.15 F ery weak 0.15 - 0.7 SW /eak 0.7 - 3.5 MW ledium strong 3.5 - 7.0 HW trong 7.0 -14.5 CW	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'B	Pr	oject		Geot	echnical	Inv.	of Ro	ock Cı		E LOG eas		CB-300	
	Dı	catio iller ole O		Jim E	,624.600/ Evans Vertical	E249		.700 Method Logged		HQ Diamond Drill SRS	[Elevation -42.70ft Dates 5/20/10 Date 5/20/10	
)rillin)etai	_	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	
	НО —		19									RUN #4: Same as RUN #3 (continued)	
	Ī	1 milion	20	100	Unfractured	0	100	•	F	— MB, 10°		RUN #5: Same as RUN #3	1
	•	1	21									Boring Terminated at 20.5 ft.	T
			22										
		- Inner	23										
			24										
			25										
			26										
			27										
			28										
		hantan	29										
		Junton	30										
		1	31										
		1	33										
			34										
			35										
Len		COVE f core un	RY x 100		R.Q.D. Sum core le			- x 100	R0 E R1 V R2 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW	THERING Fresh Slightly Moderate	46126	_
		INUIT` tures/F	Y SPAC Run	CING					R3 M R4 S R5 V	Medium strong 3.5 - 7.0 HW strong 7.0 -14.5 CW	Highly Complete Residual	ely DDW	2

		T = :	TO LOAD	I nuc= · · ·	TIO!			Hole No. CB-3	<u>301</u>	
DRILLII	NG LO	•	rision North Atlantic	INSTALLA Dhila	ation delphia Di	ictrict		SHEET 1 OF 1 SHEE		
I. PROJECT			North Atlantic		AND TYPE C		6" Tri-Cone / HC		-15	
	ical Inv.	of Rock	Cut Areas				OWN (TBM or MSL)	טומוווטווע DIL		
2. LOCATION (Coordinates	or Station)		MLLV			(. D.M O. MOL)			
		I 366,46 ⁴	4.7 E 251,030.2			'S DESIGNA	ATION OF DRILL			
B. DRILLING AC Uni-Tech		`o Inc		CME-		(500) 1005	N. BIOTHERE	LINDIOTI IDDED		
1. HOLE NO. (A			e and		L NO. OF O' LES TAKEN	VERBURDE	N DISTURBED 2	UNDISTURBED 0		
file number)			CB-301	14 TOTA	L NUMBER (CORE BOX		<u>:</u>		
5. NAME OF DE					ATION GRO			<u> </u>		
Jim Evans B. DIRECTION (ARTED	COMPLETED		
DIRECTION (INCLINED	DEG. FROM VERT.	16. DATE	HOLE		5/20/2010	5/20/2010		
				17. ELEV	ATION TOP	OF HOLE	-45.4			
7. THICKNESS			2.8	18. TOTA	L CORE RE	COVERY FO	OR BORING	96	3 %	
B. DEPTH DRIL			17.7	19. GEOL	OGIST					
9. TOTAL DEPT	TH OF HOL	.E	20.5	Steve Scott S						
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description)	S	RECOV- ERY	SAMPLE NO.	(Drilling time,	water loss, depth etc., if significant)		
-45.4	0.0 —		d Poorly-graded GRAVEL with silt and sa	nd	е 58	f S-1	25-33-27-24	g		
- 1 0. 1	5.0	60H	(GP-GM), wet, very dense, medium bro	wn gravel	30	0.0	N = 60			
47.0			(fine to coarse, sub-rounded, sub-angul	ar, mixed		2.0				
-47.0 -47.4	1.6 — 2.0 —		lithology) with little fine to coarse, sub-rollsand and silt	ī						
			Top of spoon interval consists of gray q	uartzite [100	S-2	35-50/4"			
-48.4	3.0		cobble Well-graded GRAVEL with silt and sand			2.0 2.8				
			(GW-GM), wet, very dense, medium-re			2.0				
			brown cobbles to fine to coarse gravel							
	=		(sub-angular, quartzite, shale) with little coarse sand and silt	fine to				MPLING OF SOILS		
	_=		Weathered mafic gneiss in spoon tip) PER ASTM D3550 HAMMER AND 30-II		
			BEDROCK - See Core Log CB-301				FALL TO DRIVE A	3-IN. O.D. SPLIT		
	_=						BARREL SAMPLE REPORTED ON THE			
	Ξ						EQUIVALENT TO			
	_=						PENETRATION TE	ST N-VALUE PER		
							ASTM D1586.			
	=									
	\equiv									
	_ =									
		X//X//								
	_=									
	=	X//X//								
	=	<i>\}\\\</i>								
	=									
	=	X/ <i>X</i> (/)								
	_=									
	_=	Y/////								
		X//\X//								
	_=									
-65.9	20.5		Poring Torminated at 20.5 ft halassains	r hattar-						
	_=		Boring Terminated at 20.5 ft. below rive	pottom.						
	_ '									
	=									

Loc Dril	oject cation ller le Orie	N J	1366 Jim E	echnical ,464.700/ Evans Vertical		,030		d	eas HQ Diamond Drill SRS	I	CB-301 Elevation -45.40ft Dates 5/20/10 Date 5/20/10
Drilling Details		Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 3ft
		4 5 6	93	Slightly Fractured Unfractured	2	64	R3 R5	F - SW	 Joint, 15° MB, 15° MB, 5° MB, 45° Joint, 5° MB, 5° 	5.2,14.6	fractured; quartz, feldspar, biotite, muscovite; fracture surfaces are slightly
Diamond Impregnated ————————————————————————————————————	1	7 8 9 10	100	Unfractured	0	100		F	 MB, 30° MB, horiz. MB, 15° MB, 10° MB, 35° MB, 35° 		weathered; (5.67-6.5') PEGMATITE, coarse grained, foliation absent, white, black, light green, phaneritic, fresh, v. hard, unfractured; quartz, feldspar, biotite, muscoite, trace pyrite; contact at 5.67' is on 50° angle RUN #2: (6.5-9') Same as RUN #1 (5.67-6.5'), except an 80° contact at 9' with GNEISS; (9-11.5') Same as RUN #1 (3-5.67') except
HQ Diamond In HQ		12 13 14 15 16	93	Slightly Fractured - Intensely Fractured	9	66		F - SW	 MB, 45° MB, 30° Joint, horiz.; joint, 76° with multiple connected horiz. joints to 14.3' Joint, 20° Joint, 20° Joint, 20° MB, 35° 		unfractured and fresh; MBs as noted RUN #3: (11.5-16.5') Same as RUN #1 (3-5.67'), except intensely fractured between 13.5-15.25'.
		17 18 19 20	98	Slightly Fractured	4	93		F - SW	 Joint, horiz. MB, 15° Joint, horiz. Joint, horiz. Joint, horiz. MB, horiz. Joint, horiz. 		RUN #4: Same as RUN #1 (3-5.67'). Boring Terminated at 20.5 ft.
CORE REC Length of core ru DISCONTII	core n	100 SPAC	cing	R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 W R3 W R4 S	xtremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

							H	ole No.	CB-302
DRILLI	NG LO	~ I	VISION	INSTALLA Dhila		otriot		SHEET	1
1. PROJECT		<u> </u>	North Atlantic		delphia Di AND TYPE O		HQ Diamond Bit	OF 1	SHEETS
	ical Inv.	of Rock	Cut Areas	1			OWN (TBM or MSL)		
2. LOCATION (Coordinate	s or Station)	MLLV	V				
STA. 106 3. DRILLING AG		367,063	i.9 E 251,894.8			'S DESIGNA	ATION OF DRILL		
Uni-Tech		Co Inc		CME-		/ERRURDE	N DISTURBED	UNDISTU	RRED
4. HOLE NO. (A				SAMP	LES TAKEN		: 0)
file number)	D ED		CB-302	14. TOTA	L NUMBER (CORE BOX	ES 2	•	
5. NAME OF DI Jim Evans				15. ELEV	ATION GROU	JND WATE	R 0.0		
6. DIRECTION				16. DATE	HOLE	STA		OMPLETED	
∨ERTICA	AL] INCLINED	DEG. FROM VERT.				5/19/2010	5/19/2	010
7. THICKNESS	OF OVER	BURDEN	0.0		ATION TOP		-44.4		00.00
8. DEPTH DRIL	LED INTO	ROCK	20.5	18. TOTA 19. GEOL	L CORE REC	JOVERY FO	DR BURING		98 %
9. TOTAL DEP	TH OF HOI	E	20.5	19. OLOL	.00101	5	Steve Scott		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	BOX OR SAMPLE	REMA (Drilling time, wa	ARKS	nth
			(Description)		ERY	NO.	weathering, etc	., if significar	nt)
-44.4	0.0 —	c \//X\//	d BEDROCK - See Core Log CB-302		е	f	9		
			BEBROOK - Occ Odic Edg OB-302						
									F
-47.0	2.6								
									F
	=								
	_=								
									F
									F
									F
									E
									E
									E
									F
	_=								F
									F
		X//X//							E
									E
									F
	=								F
		XXXX							F
	=	X//X//							E
-64.9	20.5	<i>DX())</i>	Position Townsia start at CO 7 St. 1						E
		1	Boring Terminated at 20.5 ft. below river	pottom.					E
									E
		<u></u>	T. Control of the con		L	1	<u> </u>		

Proje Loca Drille Hole	ition	N367 Jim E	echnical ,063.900/ Evans Vertical	Inv.	of Ro ,894.	ock Cı	ut Ar	E LOG eas HQ Diamond Drill SRS	I	CB-302 Elevation -44.40ft Dates 5/19/10 Date 5/19/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2 3 4	94	Moderately Fractured	9	70	R2 R2 R2	F	Joint, 5° Joint, 30° Joint, 5° Joint, horiz.	2.9,3.0,1.	RUN #1: GNEISS, fine grained, 70° foliation, black, white, gray, phaneritic, fresh, hard, mod. fractured with sl. to no separation; gneiss consists of mainly of biotite, quartz, plagioclase; fracture surfaces sl. weathered
amond Impregnated	5 6 7 8 9	100	Moderately Fractured	11	76	R3	F	Joint, 5° Joint, horiz. Joint, horiz. Joint, horiz. Joint, horiz. Joint, 5° Joint, 30° Joint, 20° Joint, 25° Joint, 25° Joint, 25° Joint, 5° Joint, 5°	6.0	RUN #2: Same as RUN #1.
HQ Diamo	10 11 12 13 14	100	Moderately Fractured	5	76		F	 Joint, horiz. Joint, 5° Joint, 5° MB, horiz. MB, 5° MB, 5° MB, horiz. Joint, horiz. MB, horiz. 		RUN #3: Same as RUN #1.
	15	100	Slightly Fractured	4	86		F	 MB, 15° MB, 20° Joint, horiz. MB, 20° 		RUN #4: Same as RUN #1, except 85° to vertical foliation, sl. fractured with sl. separation.
CORE RECO Length of co core run DISCONTINU No. of fracture	ore x 100	CING	R.Q.D. Sum core le length c			- x 100	R0 E R1 \ R2 \ R3 M R4 S R5 \	Extremely weak <0.15 F /ery weak 0.15 - 0.7 SW /eak 0.7 - 3.5 MW /dedium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	I ATHERING Fresh Slightly Moderate Highly Complete Residual	HEE NO. 46126 PREPARED By: DDW

O'BRIEN & Project Locatio Driller Hole O	n N	Geoto N367 Jim E	Rechnical ,063.900/ Evans Vertical	Inv.	of Ro ,894	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-302 Elevation -44.40ft Dates 5/19/10 Date 5/19/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description
— НО —	19	100	Unfractured	0	100		F	— Joint, 20° — Joint, horiz.; joint, 75° ⊃ Joint, 60° — MB, 35°		RUN #4: Same as RUN #1, except 85° to vertical foliation, sl. fractured with sl. separation. (continued) RUN #5: Same as RUN
<u> </u>	21									#4, except unfractured. Boring Terminated at 20.5 ft.
	23									
	25 26									
-	27									
	29									
	31									
	33									
	34									
CORE RECOVE Length of core core run DISCONTINUITY No. of fractures/F	x 100 Y SPAC	CING	R.Q.D. Sum core le length o			- x 100	R0 E R1 V R2 V R3 M R4 S	xtremely weak <0.15 F /ery weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW /ledium strong 3.5 - 7.0 HW /trong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: PDW

							Hole No. CB-3	<u> 03</u>
DRILLI	NG LO	~ I	ISION North Atlantic	INSTALLA Phila	ATION delphia Di	ietrict	SHEET 1 OF 1 SHEE	TC
1. PROJECT		1 1	NOTHE AHATHIC		ND TYPE O		OF 1 SHEE	.10
Geotechn			Cut Areas				OWN (TBM or MSL)	\dashv
2. LOCATION (MLLV	V			
3. DRILLING AG		1 307,048	5.3 E 251,931.6	12. MANU CME-		'S DESIGN	ATION OF DRILL	
Uni-Tech	Drilling (13. TOTA	L NO. OF O	VERBURDE	N DISTURBED UNDISTURBED	\dashv
4. HOLE NO. (A file number)	As shown or	n drawing titl	e and CB-303	SAMP	LES TAKEN		1 0	
5. NAME OF DE	RILLER		: СВ-303		L NUMBER (_
Jim Evans	S			15. ELEV	ATION GROU		0.0	_
6. DIRECTION				16. DATE	HOLE	SI	ARTED COMPLETED 5/19/2010	
		INCLINED		17. ELEV	ATION TOP	OF HOLE	-45.0	
7. THICKNESS			1.3	18. TOTA	L CORE REC	COVERY F	OR BORING 99	%
8. DEPTH DRIL			19.2	19. GEOL	OGIST		0, 0, 11	
9. TOTAL DEP	TH OF HOL	-E	20.5 CLASSIFICATION OF MATERIALS	<u> </u>	% CORE	BOX OR	Steve Scott REMARKS	_
ELEVATION	DEPTH	LEGEND	(Description)	3	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth weathering, etc., if significant)	
а	b	С	d		е	f	g	
-45.0	0.0		Poorly-graded GRAVEL with silt and sar (GP-GM), wet, very dense, dark gray (5)	nd YR 4/11	63	S-1 0.0	25-21-50/4"	E
-46.3	1.3	16 D	fine to coarse gravel (sub-rounded, sub-	angular,		1.3		E
-47.0	2.0		mixed lithology) with fine to coarse, sub- sand and trace silt	rounded _[1	E
-47.0	2.0		BEDROCK - See Core Log CB-303				NOTE: DRIVE SAMPLING OF SOILS	E
							WAS COMPLETED PER ASTM D3550 USING A 300-LB. HAMMER AND 30-IN	
							FALL TO DRIVE A 3-IN. O.D. SPLIT	
	=						BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT	E
							EQUIVALENT TO THE STANDARD	E
							PENETRATION TEST N-VALUE PER ASTM D1586.	E
							ASTM D1966.	E
								E
								E
	=							E
								E
								E
								E
	=							E
								E
								E
								F
	_=							F
	=							F
								F
	=							E
								E
								E
		X //X//						E
	=							E
								E
								F
	=							E
								E
05 -								E
-65.5	20.5	X//XX//	Boring Terminated at 20.5 ft. below river	bottom				E
				20.0011.				E
								F

Drill	ation	N367 Jim E	echnical ,645.300 Evans Vertical	Inv.	of Ro ,931	ock Cı	u t Ar e	E LOG eas HQ Diamond Drill SRS	I	CB-303 Elevation -45.00ft Dates 5/19/10 Date 5/19/10
Drilling Details	#=	Core Recovery (%)	Core	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 1.67ft
A A	3	93	Moderately Fractured	2	32		F	 Joint, horiz. Joint, 10° MB, horiz. MB, 20° MB, horiz. MB, 10° MB, 10° 		RUN # 1: GNEISS, fine grained, horiz. foliation is not present, white, black, gray, phaneritic, fresh, hard, mod. fractured; fractured surfaces slightly weathered with secondary mineralization present
- p	2 6 7 8	100	Moderately Fractured - Intensely Fractured	Multiple	33	R5	F		14.6	RUN # 2: GNEISS, fine grained, foliation not present, white, black, gray, phaneretic, fresh, hard, mod. to intensely fractured on 2 to 4" intervals for entire 4 to 9' run, some enhanced by mechanical breaks at horiz. to 10° angles
——————————————————————————————————————	10 11 12 13 14	100	Unfractured	0	81		F			RUN # 3: 9-10.5' Same as RUN # 2 except unfractured with mechanical breaks on 2-5" intervals 10.5-14' PEGMATITE, coarse grained, 60° foliation, phaneritic, fresh, hard, unfractured; pegmatitic minerals are quartz, muscovite, light, green mineral; pegmatite contact with gneiss 56° at top and 76° at bottom.
	15 16 17 18	100	Unfractured	0	88		F			RUN # 4: Same as RUN # 2 except unfractured with mechanical breaks on 3-10" intervals
CORE REC Length of core run DISCONTIN No. of fractu	x 100 NUITY SPA		R.Q.D. Sum core le	engths >		- x 100	R0 E R1 V R2 V R3 M R4 S	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Locatio Driller Hole O	en N	Geot N367 Iim E	echnical ,645.300/ Evans Vertical	Inv.	of Ro 1,931	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-303 Elevation -45.00ft Dates 5/19/10 Date 5/19/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	
M — HQ	20 21	100	Unfractured	1	86		F	− Joint, 70°		RUN # 5: Same as RUN # 2 except unfractured with mechanical breaks on 8-16" intervals; pegmatic material penetrates core on 70° angle, 1" thick centered at	
	22 23									20.25', bottom surface of pegmatite is seperated from gneiss with mod. weathering Boring Terminated at 21.5 ft.	
-	242526										
-	27 28										
	30										
	31 32 33										
	34 35										
	36										
Length of core core run DISCONTINUIT No. of fractures/f	- x 100 Y SPAC	CING	R.Q.D. Sum core le			- x 100	R0 E R1 V R2 V R3 M R4 S R5 V	Extremely weak	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW	_

							H	ole No. CB-304
DRILLI	NG LOG		rision North Atlantic	INSTALLA Phila	ATION delphia Di	etrict		SHEET 1
1. PROJECT		1 1	NOTH AHATHIC		AND TYPE C		HQ Diamond Bit	OF 1 SHEETS
	ical Inv. of				M FOR ELEV		OWN (TBM or MSL)	
STA. 104	+800 N 36		9.7 E 252,848.0			'S DESIGNA	ATION OF DRILL	
3. DRILLING AG	GENCY Drilling Co.,	Inc		CME-	750		N DISTURBED	UNDISTURBED
	As shown on dra		e and CB-304	SAMP	LES TAKEN		0	0
5. NAME OF DI	RILLER		<u> </u>		L NUMBER (_	
Jim Evans	S				ATION GRO			COMPLETED
U. DIRECTION VERTICA		LINED	DEG. FROM VERT.	16. DATE			5/17/2010	5/17/2010
7. THICKNESS	OF OVERBURI	DEN	0.0		ATION TOP		-46.7	95 %
8. DEPTH DRIL	LED INTO ROC	CK	20.0	19. GEOL		JOVERTIC	DI BONING	95 %
9. TOTAL DEP	TH OF HOLE		20.0				Steve Scott	
ELEVATION		GEND	CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	(Drilling time, w	ARKS rater loss, depth c., if significant)
a -47.0	b	c /////	d		е	f	- (g
-47.0	0.3		BEDROCK - See Core Log CB-304		-			
								E
								F
								F
								E
								F
		>>//						
								F
		>>//						
		>						
		X//						
		X(/)						
								F
		} <i>}</i> //						
								F
		>>//						
								Þ
		}X//						
								F
		X//						
								Þ
			1					
								F
			1					
		////	}					F
-66.7	20.0		Portion Toronto 1 1 100 % 1 1 1 1	-44-	-			
			Boring Terminated at 20 ft. below river t	ottom.				E
l						1	1	

Drille	ject ation	O N J	Seoto 1368 Iim E	echnical ,339.700/ Evans Vertical	Inv.	of Ro 2,848	ock C	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-304 Elevation -46.70ft Dates 5/17/10 Date 5/17/10
Drilling Details	<u> </u>	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0.5ft
	4	1 2	100	V. Slightly Fractured		90	R3	SW		3.8	RUN # 1: GNEISS, foliated 75° to vertical, black, white, gray, sl. weathered, hard (except foliation planes are mod. soft), v. sl. fractured; biotite, amphibolite, quartz, muscovite; horiz. MBs present from 0.5-2'
led ————————————————————————————————————		4 5 6 7	83	Moderately Fractured - V. Slightly Fractured		50	R2	MW - SW		3.1	\at 2-3" intervals RUN # 2: GNIESS, foliated at 75°, white, black, gray, sl. weathered, hard (except foliation planes are mod. soft), v. sl. fractured along foliation planes; predominantly quartz from 4-6', foliated quartz, mica, and amphibolite from 6-8'; fracture surfaces are sl. to mod. weathered; MBs throughout
——————————————————————————————————————		9 10 11 12	100	Moderately Fractured		73		sw			RUN # 3: GNEISS, foliated 75°, white, black, gray, quartz, biotite, amphibolite, muscovite, sl. weathered, hard except foliation planes are mod. soft, mod. fractured horizontally (avg. fracture spacing is 3-4", overall fracutres spaced 1-13"); quartz, biotite, amphibolite, muscovite; fracture surfaces mod. weathered, fractured along foliation at 12.75'
		14 15 16	96	Intensely Fractured		48		SW			RUN # 4: Same as RUN # 3 except mod. fractured along foliation planes, intensely fractured on foliation planes
CORE RECO Length of core run DISCONTIN No. of fracture	ore x	100 SPAC	ING	R.Q.D. Sum core le length c			- x 100	R0 E R1 V R2 V R3 M R4 S R5 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW Medium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	ATHERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Location Driller Hole Or	n N	Seoto 1368 _: Jim E	Rechnical ,339.700/ Evans Vertical	Inv.	of Ro 2,848	ock Cı	ut Are	E LOG eas HQ Diamond Drill SRS	I	TEST HOLE CB-304 Elevation -46.70ft Dates 5/17/10 Date 5/17/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description
——————————————————————————————————————	19 20	100	Slightly Fractured		66		SW			RUN # 5: Same as RUN # 3 except horiz. MBs on 4-9" intervals, sl. fractured along foliation planes with mod. weathered surfaces
-	21 22 23									Boring Terminated at 21 ft.
	24 25									
	26 27									
	29									
	31									
	33 34									
CORE RECOVE Length of core core run DISCONTINUITY	x 100	-	R.Q.D. Sum core le length c	engths >		- x 100	R0 E R1 V R2 V	Extremely weak <0.15 F Very weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW	THERING Fresh Slightly Moderate Highly	46126

					T			П	ole No.	CB-30
DRILLII	NG LO	}	1	ISION Jorth Atlantic	INSTALLA Philac	ATION delphia Di	etrict		SHEET	1 SHEETS
1. PROJECT				IOITH Atlantic		AND TYPE O		6" Tri-Cone	OF Z	SHEETS
Geotechn	ical Inv.	of R	ock	Cut Areas				OWN (TBM or MSL)		
2. LOCATION (Coordinates	or Sta	ation)		MLLW					
STA. 98 + 3. DRILLING AG		370,8	347.	7 E 259,158.2	12. MANUFACTURER'S DESIGNATION OF DRILL CME-750					
Uni-Tech		co Ir	nc		13. TOTAL NO. OF OVERBURDEN : DISTURBED : UNDISTURBED					
4. HOLE NO. (A					SAMP	LES TAKEN	VERBORDE	10	(
file number)				CB-305	14. TOTAL NUMBER CORE BOXES 0					
5. NAME OF DF Jim Evans					15. ELEV	ATION GROU	JND WATE	R 0.0		
6. DIRECTION	_				16. DATE	HOLE	ST	•	OMPLETED	
∨ERTICA	AL	INCLI	NED	DEG. FROM VERT.				5/14/2010	5/14/2	010
7. THICKNESS	OF OVERE	URDE	N	20.0		ATION TOP (-42.4		
3. DEPTH DRIL	LED INTO	ROCK		0.0		L CORE REC	COVERY FO	OR BORING		N/A %
9. TOTAL DEP				20.0	19. GEOL	OGIST	9	Steve Scott		
EL EL (4 TION)	DEDTIL			CLASSIFICATION OF MATERIALS	S	% CORE	BOX OR	REMA		
ELEVATION	DEPTH	LEGE	:ND	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, w weathering, etc		
a -42.4	0.0 —	o O (i	T. K	d	ad	e = 54	f C 1		<u> </u>	
-+2.4	0.0	· 09	16	Poorly-graded GRAVEL with silt and sar (GP-GM), wet, dense, very dark grayish	brown	54	S-1 0.0	20-17-22-19 N = 39		
		00	14	(3Y 5/2), fine to coarse (up to 2" diameter (sub-rounded, mixed lithology) with fine	er) gravel		2.0			
		° V 9		(sub-rounded, mixed lithology) with fine the sand, silt	to coarse					
			12	Becoming very dense		100	S-2	58-50/3"		
	_=	375	7,69				2.0 2.8			
			31				2.0			
	=	J 0.	7 19							
-47.0	4.6	°0°		With quartzite cobbles		54	S-3 4.0	27-48-23-17 N = 71		
			Mg				6.0	14 - 71		
		· 09								
		9 d	14			100	S-4] 17-25-25-26		
		$^{\circ}$	10			100	6.0	N = 50		
			D)				8.0			
	=	°Šţ	7/9/							
			31			100	S-5	15-28-48-50/3"		
	_=)°.	7 8	ł			8.0 9.8	N = 76		
		°0°	₩				0.0			
			119			104		100/1"		
		009				104	S-6 10.0	100/1"		
	_=	6 d	H				10.1			
-54.4	12.0	200	76							
J-1T		X	ظر	Saprolitic GNEISS, wet, medium dense,		63	S-7	7-9-15-18		
	=	¥		(N9), black (N1), light greenish gray (56)			12.0 14.0	N = 24		
			1.	quartz (medium to coarse sand sized), be with biotite and muscovite, trace garnet	anueu		14.0			
	_=		~							
			¥	la , , , , , , , , , , , , , , , , , , ,		67	S-8 14.0	8-9-12-19 N = 21		
-57.4	15.0		샊	Band of mica at 45° contact	io micc		16.0			
			1	Sharp contact on 45° angle with saprolit SCHIST, foliated, predominantly mafic, v						
		包		grayish black (N2), biotite and likely chlo		67	S-9	12-27-43-49		
		H				0,	16.0	N = 70		
		X	J				18.0			
	\equiv	.9.0	36	Mylonitic 3" felsic band with sharp 45° c	ontacts					
		X	3	Below felsic band saprolitic SCHIST is s		100	S-10	17-33-39-54		
	_=		7.	mafic, with clear mineral assemblage Felsic assemblage consisting of muscov	vite and		18.0 20.0	N = 72		
		C	7	quartz, very soft, saprolitic foliation not in	dentified,		20.0			
-62.4	20.0 =	• 0		mylonitic mafic intrusions						
				Boring Terminated at 20 ft. below river b	oottom.			NOTE: DRIVE SAME WAS COMPLETED F		
			ļ			1		USING A 300-LB. HA		
			ì							
								FALL TO DRIVE A 3-	IN. O.D. SF	PLIT
NG FORM	1836	PE-		S EDITIONS ARE OBSOLETE.		PROJECT			IN. O.D. SF	LUE

Hole No. CB-305

				ELEVATION TOP OF HOLE				Hol	e No. C	B-305
DRILLING	G LOG (Cont SI	heet)	-42.4				Hole No. CB-	305	
PROJECT			_		INSTALLA				SHEET	2
Geotechn	ical Inv.	of Rock	Cut Ar			delphia Di	istrict	DEMAR	OF 2	SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMAR (Drilling time, wate weathering, etc.,	KS r loss, depth f significant)	
а	b	С		d		е	Ť	REPORTED ON THE L		
								EQUIVALENT TO THE	Standari) -
								PENETRATION TEST I	N-VALUE P	ER -
								ASTM D1586.		
	_									F
										F
										F
										F
										E
										F
										F
										F
										F
										E
										E
										F
										E
										E
										F
										E
										E
										F
										E
										F
										F
										F
										E
										F
										E
NG FORM	4000					PROJECT			HOLE N	^

ENG FORM JUN 67 1836-A

DRILLING LOS								Hole No. (CB-306
1. RROLECT Geotechnical Inv. of Rock Cut Areas 1. In July For Earl 6" Tirl-Cone / Ho Diamond Bit	DRILLI	NG LO	~ I				istrict		1
Geotechnical Inv. of Rock Cut Areas			1 1	NOTHER PARAMETERS		•		-	
2. LOCATION (Counterlates of Sillation) STA. 140 + 100 N 348,466.7 E 223,737.2 1.2 MANUFACTURER'S DESIGNATION OF DRIBL.	Geotechn								71L
2. DRILLING AGENCY					MLLV	V			
Unit-Tech Drilling Co., Inc			340,400	J.I E 223,131.2	-		'S DESIGN	ATION OF DRILL	
SAME OF DRILLER 15 SECATION OF HOLE 15 STATED 16 STATED	Uni-Tech	Drilling (,	13. TOTA	L NO. OF O	VERBURDE		
SAMPLE STARTED SAMPLER STARTED SAMPLER SAMPL		As shown or	n drawing titl		SAMF	LES TAKEN		3 0	
6. DRECTION OF HOLE DEG. FROM VERT OF CHILD STARTED OF MIZE O	*	RILLER		CB-300					
Content Cont					15. ELEV	ATION GRO		· · · · · · · · · · · · · · · · · · ·	
7. THICKNESS OF OVERBURDEN				DEC EDOLUTET	16. DATE	HOLE	517		10
8. DEPTH DRILLED INTO ROCK 14.5 9. TOTAL DEPTH OF HOLE 20.5 CLASSIFICATION OF MATERIALS (Description) a b b c C Sandy FAT CLAY (Full well-will soft), yellowish red (6YR 56), some fine to coarse sub-rounded mixed lithicity gravel and trace varying of fine to medium sand 48.6 4.0 Saprolitic CNEISS, wel, dense, grayish green black, saprolitic gness, brother and foliation present, crumbes to medium to coarse sand SEE DROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 See Scott RIMARYS RECOVER BOX ORE RECOVER BOX ORE RECOVER WHITE BOX ORE RECOVER RECOVER RECOVER BOX ORE RECOVER RECOVER BOX ORE RECOVER RECOVER RECOVER RECOVER RECOVER BOX ORE RECOVER RECOVER BOX ORE RECOVER BOX ORE RECOVER BOX ORE RECOVER BOX ORE RECOVER RECOVER BOX ORE RECOVER					17. ELEV	ATION TOP	OF HOLE	-44.6	
Steve Scott Steve					18. TOTA	L CORE RE	COVERY FO	OR BORING	75 %
ELEVATION DEPTH LEGEND CLASSFICATION OF MATERIALS (Description)					19. GEOL	.OGIST		04	
ELECATION DEPTH LEGEND Consequence	9. TOTAL DEP	TH OF HOL	-E		9	% CORE			
a	ELEVATION	DEPTH	LEGEND		3	RECOV-	SAMPLE	(Drilling time, water loss, dept	h)
Age			С	d		е	f	g	
Japhrounded mixed lithology gravel and trace varying of fine to medium sand 47.0 2.4 100 5.2 1.4-5-7 N = 9 48.6 4.0 Saprolitic GNEISS, wet, dense, grayish green black, saprolitic gneiss, biotite and foliation present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 30-LB HAMMER AND 30-INCHER ARREL SWIMER AND SOINCHER AR	-44.6	0.0		Sandy FAT CLAY (CH), wet, medium so vellowish red (5YR 5/8), some fine to co	oft, parse	83			E
Saprolitic GNEISS, wet, dense, grayish green black, saprolitic gneiss, biotite and foliation present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB HAMMER AND 30-INCH FALL TO DRIVE A 3-IN. O.D. SPILL TO DRIVE A 3-IN. O.D. SPILL TO BRIVE A 3-IN. O.D.		=		sub-rounded mixed lithology gravel and	trace				E
Saprolitic GNEISS, wet, dense, grayish green black, saprolitic gneiss, biotite and foliation present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB HAMMER AND 30-INCH FALL TO DRIVE A 3-IN. O.D. SPILL TO DRIVE A 3-IN. O.D. SPILL TO BRIVE A 3-IN. O.D.				varving of fine to medium sand					E
Saprolitic GNEISS, wet, dense, grayish green black, saprolitic gneiss, biotite and foliation present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB HAMMER AND 30-INCH FALL TO DRIVE A 3-IN. O.D. SPILL TO DRIVE A 3-IN. O.D. SPILL TO BRIVE A 3-IN. O.D.	-47.0	2.4				100			E
Saprolitic GNEISS, wet, dense, grayish green black, saprolitic gnelss, ibotite and foliation present, drumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM 03550 USING A 300-LB. HAMMER AND 30-INCHEAL TO DRIVE A 51N. O. D. SYLIT BARREL SAMPLER. THE NVALUE PER ASTM D1596. STATE OF THE SAMPLER SA								N = 9	E
asprolitic GNEISS, wet, dense, grayish green labek, saprolitic greiss, biotite and foliation present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 BE							4.0		E
BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB. HAMMER AND 30-INCH-FALL TO DRIVE A3 IN: O.D. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.	-48.6	4.0		Connelitie CNIFICC wat doors were in		00	0.0	0.40.40.40	E
present, crumbles to medium to coarse sand sized particles BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB, HAMMER AND 30-INCH FALL TO DRIVE A 3-IN . D. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOSS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586. BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB, HAMMER AND 30-INCH FALL TO DRIVE A 3-IN . D. SPLIT BARREL SAMPLER. THE N-VALUE PER ASTM D1586.				black, saprolitic gneiss, biotite and foliati	ion	83			E
BEDROCK - See Core Log CB-306 BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS WAS COMPLETED PER ASTM D3550 USING A 300-LB. HAMMER AND 30-INCH FALL TO DRIVE A 5-IN. O L. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.		_=		present, crumbles to medium to coarse	sand		6.0		F
BEDROCK - See Core Log CB-306 NOTE: DRIVE SAMPLING OF SOILS. WAS COMPLETED PER ASTM D3550 USING A 300-LB. HAMMER AND 30-INCH FAIL TO DRIVE A 3-IN. O D. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.	-50.6	6.0		sizeu particies					
USING A 300-LB. HAMMER AND 30-INCH-FALL TO RIVE A 3-IN. O. D. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.		=		BEDROCK - See Core Log CB-306					
FALL TO DRIVE A 3-IN, O.D. SPLIT BARREL SAMPLER. THE N-VALUE REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.		_=							
REPORTED ON THE LOGS IS NOT EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.								FALL TO DRIVE A 3-IN. O.D. SPI	LIT =
EQUIVALENT TO THE STANDARD PENETRATION TEST N-VALUE PER ASTM D1586.									
-65.1 20.5								EQUIVALENT TO THE STANDAR	RD =
-65.1 20.5									PER E
									F
									E
		_=							E
									E
		_=							E
									F
		_							F
									E
									E
									E
									E
		_=							E
									E
									E
		=							E
									F
									E
		=							E
Boring Terminated at 20.5 Tt. Delow river Dottom.	-65.1	20.5	X//X//	Doring Torminated at 00 5 ft halass	n ho#=:				E
				Boring Terminated at 20.5 ft. below river	pottom.				E
									E

Lo D	rojec ocatio riller ole O	on I	N348 Jim E	echnical ,466.700 Evans Vertical	Inv. o	of Ro 5,737	ock C	ut Are	E LOG eas HQ Diamond Drill SRS]	CB-306 Elevation -44.60ft Dates 6/4/10 Date 6/4/10
Drillin Detai	•	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 6ft
	- - - -	7 8 9	5	Intensely Fractured	Multiple	0		F	Initiat COS		RUN # 1: 2" Recovery, broken GNEISS fragments
HQ Diamond Impregnated	- - - - -	10 11 12 13	96	Moderately Fractured	11	51		F	Joint, 60° Joint, horiz. Multiple joints, horiz. and 70° Joint, horiz. Joint, horiz. Joint, 65° Joint, horiz. Joint, 75° MB, horiz.		RUN # 2: GNEISS, fine grained, foliations absent, black, dark green, phaeritic, fresh, hard, mod. fractured; fractured surfaces are sl. weathered and contain secondary mineralization
ОН	- - - - -	15 16 17 18 19	98	Moderately Fractured	2	92		F	- MB and Joint, 75° - Joint, 60° - MB, horiz.		RUN # 3: Same as RUN # 2 RUN # 4: Same as RUN
<u> </u>		20	100	Fractured	1	0		F	Joint, 75° MB, horiz. MB, horiz. MB, horiz.		# 2 Boring Terminated at 20.5 ft.
	- - - -	22									
Length core in DISCONT No. of frac	f core un INUIT	- x 100 Y SPAC	CING	R.Q.D. Sum core le length d	engths >		- x 100	R0 E R1 \ R2 \ R3 M R4 S R5 \	Extremely weak < 0.15 F /ery weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW /ledium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	HEE NO. 46126 PREPARED By: DDW

								o. CB-307
DRILLI	NG LO	~	/ISION	INSTALLA			SHEI	•
			North Atlantic		delphia Di		OF LIGHT	1 SHEETS
			Cut Areas		AND TYPE O		HQ Diamond Bit OWN (TBM or MSL)	
2. LOCATION (MLLV				
3. DRILLING AC		1 367,110	0.7 E 251,024.5	12. MANU CME-		'S DESIGNA	ATION OF DRILL	
Uni-Tech 4. HOLE NO. (A			le and	13. TOTA		/ERBURDE	N DISTURBED UNDIS	TURBED 0
file number)		r arawing titi	CB-307		L NUMBER (-ii	
5. NAME OF DE Jim Evans				15. ELEV	ATION GRO	JND WATE		
6. DIRECTION				16. DATE	HOLE	STA	ARTED COMPLET	
⊠ VERTICA	AL	INCLINED	DEG. FROM VERT.		ATION TOP	OF HOLE	5/20/2010 5/20 -44.4	0/2010
7. THICKNESS	OF OVERE	BURDEN	0.0		L CORE REG			92 %
8. DEPTH DRIL	LED INTO	ROCK	20.5	19. GEOL		JOVERNIA	SIX BOIXIIVO	92 /
9. TOTAL DEP	TH OF HOL	.E	20.5		N 0005		Steve Scott	
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, weathering, etc., if signif.	depth ficant)
a -44.4	0.0 —	c \//X\//	d		е	f	g	· .
-44.4	0.0		BEDROCK - See Core Log CB-307					E
-47.0	2.6							E
17.0								E
	_=							E
								E
	_							E
								E
								=
								E
	=							E
								E
								E
	=							E
	=							E
								E
								=
								E
	=							E
	_=							E
								E
								=
								E
	=							=
								E
	_=							E
	=							E
	=	X//X//						E
	=							E
	_=							E
-64.9	20.5	<i>//X///</i>	Position Torresia standard 20 5 5 1 1 1					E
	_=		Boring Terminated at 20.5 ft. below river	pottom.				E
								E
1	_	1	1			I	I	—

Drille	ject (Geot N367 Jim E	echnical ,110.700/ Evans Vertical	Inv. o	of Ro ,024.	ck Cı	u t Ar e	E LOG eas HQ Diamond Drill SRS]	TEST HOLE CB-307 Elevation -44.40ft Dates 5/20/10 Date 5/20/10
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description Coring Started at 0ft
	1 2 3	40		Multiple	0		F	— MB, horiz.		RUN # 1: GNIESS, fine grained, massive (mica orientation present, foliation not present), white, black, gray, phaneritic, fresh, hard, quartz, biotite, muscovite; mechanial breaks on 1-2" intervals for 0-1' of core;
nated ————————————————————————————————————	4 5 6 7 8	100	Unfractured	0	93	R5	F	— MB, horiz. — MB, horiz.	14.1	MBs are all horizontal RUN # 2: Same as RUN # 1 except unfractured with trace pyrite and mica orientation on 75° angle
HQ Diamond Impregnated	9 10 11 12	100	Slightly Fractured	2	90		F	 Joint, 5° Joint, horiz. MB, 5° MB, 25° MB, 15° 		RUN # 3: Same as RUN # 2 except slighly fractured; fractured surfaces are slighly weathered and secondary mineralization is present
	15 	100	V. Slightly Fractured	1	96		F	— Joint, 40°		RUN # 4: Same as RUN # 2 except v. sl. fractured; fractured surfaces are slighly weathered and secondary mineralization is present
CORE RECO Length of core run DISCONTIN No. of fracture	ore x 100		R.Q.D. Sum core le length c	engths >		x 100	R0 E R1 V R2 V R3 N R4 S R5 V	Extremely weak <0.15 F /ery weak 0.15 - 0.7 SW Veak 0.7 - 3.5 MW /ledium strong 3.5 - 7.0 HW Strong 7.0 -14.5 CW	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW

O'BRIEN & Project Locatio	(Geot	R echnical ,110.700/	Inv.	of Ro	ock Cı		E LOG eas		TEST HOLE CB-3 Elevation -44.40ft	
Driller Hole O		Jim E	vans Vertical			Method Logged		HQ Diamond Drill SRS	I	Dates 5/20/10 Date 5/20/10	
Drilling Details	Depth (ft)	Core Recovery (%)	Core Condition	Discontinuity Spacing	R.Q.D. (%)	Intact Rock Strength (psi)	Weathering	Structural Discontinuity Description	Unconf. Comp. Strength (ksi)	Rock Mass Description	1
HQ ——	19	100	Unfractured	0	100		F			RUN # 5: Same as RU # 2 except unfractured	N
	21									Boring Terminated at 20 ft.	.5
-	22										
_	23										
-	24										
_	25										
-	2627										
-	28										
_	29										
-	30										
-	31										
1	32										
_	33										
<u>-</u>	34										
	35										
CORE RECOVE Length of core core run DISCONTINUITY No. of fractures/F	x 100 7 SPAC	CING	R.Q.D. Sum core le length c			- x 100	R0 E R1 V R2 V R3 M R4 S	Extremely weak	THERING Fresh Slightly Moderate Highly Complete Residual	46126 PREPARED By: DDW	

		Los	VICION	INCTALL	ATION			Hole		<u>CB-3</u>	<u> 808</u>
DRILLI	NG LO	•	rision North Atlantic	INSTALL/ Philad	arion delphia Di	strict			HEET F 2	1 SHEE	-TS
1. PROJECT		<u></u>	Torus, tuantio		AND TYPE O		6" Tri-Cone		_	OFFICE	
			Cut Areas				OWN (TBM or MSL)				
2. LOCATION () 3 E 260,818.7	MLLV		IO DEGICAL	ATION OF BBILL				
3. DRILLING AC		370,323.	.5 £ 200,010.7	CME-		S DESIGNA	ATION OF DRILL				
Uni-Tech			,	13. TOTAL NO. OF OVERBURDEN DISTURBED UNDISTURBED						\neg	
4. HOLE NO. (A file number)	As shown on	drawing titl	le and CB-308	SAMPLES TAKEN 10 0 14. TOTAL NUMBER CORE BOXES 0							
5. NAME OF DE	RILLER		<u> </u>								
Jim Evans				15. ELEV	ATION GROU		R (ARTED).0 COMPL	ETEC	1	
6. DIRECTION VERTICA		INCLINED	DEG. FROM VERT.	16. DATE	HOLE		5/13/2010		/13/2		
7. THICKNESS				17. ELEV	ATION TOP (OF HOLE	-45	.2			
B. DEPTH DRIL			20.0		L CORE REC	COVERY FO	OR BORING			N/A	, %
9. TOTAL DEP			20.0	19. GEOLOGIST Steve Scott							
			CLASSIFICATION OF MATERIAL	 S	% CORE	BOX OR		REMARKS			
ELEVATION	DEPTH	LEGEND	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling tin weatherin	ne, water lo g, etc., if si	ss, de _l gnifica	oth nt)	
a -45.2	0.0 —	C	d Poorly-graded SAND (SP), wet, medium	donos	e 29	f S-1	6-7-7-4	g			
-43.2	0.0		to very loose, brownish gray, fine to med	dium	29	0.0	N = 14				
			sand with trace muscovite flakes, fine q gravel, wood, coal flecks, stratified coal	uartz fleck		2.0					
-47.0	1.8		layers present (1/4" thick on 1-2" interva	als)/							
					100	S-2 2.0	2-2-2-1 N = 4				
-48.5	3.3 —					4.0	1 V				
40.0			FAT CLAY (CH), wet, very soft, dark gra		-						
	-		interbedded lenses of fine sand (varving	1)	33	S-3	1-1-1-1				
	Ξ					4.0 6.0	N = 2				
	=					0.0					
	_=				400						
					100	S-4 6.0	WOH/24" N = WOH				
	_=					8.0					
	=										
	=				100	S-5	2-1-2-1				
	_=					8.0 10.0	N = 3				
	ΞΞ		Craval acom consisting of fine to accre	arayal							
-55.2	10.0 —		Gravel seam consisting of fine to coarse (up to 1.5" diameter) sub-rounded, felsion	e gravei c, less /	100	S-6	WOH/24"				
	=		mafic	- f t - dd -	100	10.0	N = WOH				
	=		Silty clayey SAND (SM-SC), wet, very s gray, silty clay with little interbedded lens			12.0					
	_=		fine sand and peat								
50.4	40.0				71	S-7 12.0	2-17-50/2"				
-58.1	12.9 =		Well-graded GRAVEL with silt and sand	l		13.2					
	=		(GW-GM), wet, very dense gravel (sub-	rounded,							
	=		sub-angular, up to 1.5" in diameter, mix lithology) with little fine to medium sand	ea and silt	58	S-8	10-27-34-45				
	_=					14.0 16.0	N = 61				
						10.0					
	=		Pagaming days		54	S-9	20-23-17-14				
	_		Becoming dense		34	16.0	N = 40				
						18.0					
			Becoming medium dense		79	S-10	10-12-11-14				
	_=					18.0 20.0	N = 23				
2-5	=										
-65.2	20.0 —		Boring Terminated at 20 ft. below river b	oottom			NOTE: DRIVES	AMPI ING	i OF 9	SOII S	
			Some rominated at 20 it. below liver t	ottorri.			WAS COMPLET	ED PER A	STM	D3550	
							USING A 300-LE FALL TO DRIVE				vСН
	=						BARREL SAMPL		N-VA	LUE	
NG FORM	1836	DDEVIOL	JS EDITIONS ARE OBSOLETE.		PROJECT		v. of Rock Cu		HOLE	NO. 3-308	

Hole No. CB-308

				ELEVATION TOP OF HOLE				HOI	e No. C	B-308
DRILLING	G LOG (Cont SI	heet)	-45.2				Hole No. CB-	308	
PROJECT			_		INSTALLA				SHEET	2
Geotechn	ical Inv.	of Rock	Cut Ar			delphia Di	strict	DEMAR	OF 2 S	SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMAR (Drilling time, wate weathering, etc.,	r loss, depth f significant)	
а	b	С		d		е	Ť	REPORTED ON THE L		
								EQUIVALENT TO THE	STANDARD)
								PENETRATION TEST I	N-VALUE PE	ER =
								ASTM D1586.		
										=
										E
										–
										F
										
										–
	=									F
										E
										E
NG FORM	4000					PROJECT			HOLE N	_

DELAWARE RIVER, TINICUM TO MARCUS HOOK, PENNSYLVANIA, NEW JERSEY & DELAWARE GEOTECHNICAL INVESTIGATION OF PROPOSED ROCK CUT AREAS REPORT

Laboratory Test Reports

1145 Massachusetts Avenue Boxborough, MA 01719 978 635 0424 Tel 978 635 0266 Fax

Geotechnical Test Report

7/9/2010

GTX-9915 Delaware River Deepening Project

Tinicum to Marcus Hook Ranges, PA

Prepared for:

O'Brien & Gere Engineering

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: --- Sample Type: --- Tested By: mmd
Sample ID:--- Test Date: 07/01/10 Checked By: njh

Project No:

GTX-9915

Depth: --- Sample Id: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
CB-289	S-1	0-2 ft	Wet, very dark grayish brown clay	138.2
CB-289	S-2	2-2 ft 11 in	Moist, very dark grayish brown gravel with silt and sand	5.6
CB-292	S-1	0-2 ft	Moist, very dark grayish brown gravel with silt and sand	5.4
CB-292	S-2	2-2 ft 10 in	Moist, dark olive gray gravel with silt and sand	4.8
CB-293	S-2	2-4 ft	Moist, very dark grayish brown silt with sand	59.1
CB-295	S-1	0-2 ft	Moist, very dark grayish brown gravel with silt and sand	7.1
CB-296	S-1	0-2 ft	Moist, dark olive brown gravel with silt and sand	7.1
CB-296	S-2	2-4 ft	Moist, olive brown silty clayey sand with gravel	5.2
CB-298	S-1	0-2 ft	Moist,very dark grayish brown gravel with silt and sand	7
CB-298	S-2A	2-3 ft	Moist, dark olive brown gravel with silt and sand	5.9

Notes: Temperature of Drying: 110° Celsius

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: --- Sample Type: --- Tested By: mmd

Boring ID: --- Sample Type: --- Tested By: mmc
Sample ID:-- Test Date: 07/01/10 Checked By: njh

Depth: --- Sample Id: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%	
CB-298	S-2B	3-4 ft	Moist, dark olive gray silty sand	14	
CB-299	S-1	0-2 ft	Moist, very dark grayish brown gravel with silt and sand	7.1	
CB-301	S-1	0-2 ft	Moist, dark olive brown gravel with silt and sand	6.3	
CB-301	S-2	2-4 ft	Moist, dark olive brown gravel with silt and sand	5.8	
CB-303	S-1	0-2 ft	Moist, dark olive brown sand with silt and gravel	9.8	
CB-306	S-1	0-2 ft	Moist, yellowish red sandy clay	53.1	
CB-306	S-2	2-4 ft	Moist, mottled bluish gray and yellowish brown sandy clay	38.4	

Notes: Temperature of Drying: 110° Celsius

a subsidiary of Geocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: --- Sample Type: --- Tested By: mmd
Sample ID:--- Test Date: 06/09/10 Checked By: jdt

Depth: --- Sample Id: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%	
CB-305	S-1	0-2 ft	Moist, dark brown gravel with sand	8.3	
CB-305	S-2	2-4 ft	Moist, dark brown gravel with sand	10.3	
CB-305	S-3	4-6 ft	Moist, dark brown gravel with sand	2.1	
CB-308	S-1	0-2 ft	Moist, dark brown sand	25	
CB-308	S-2A	2-4 ft	Moist, dark brown sand	26	
CB-308	S-2B	2-4 ft	Moist, dark gray clay	76.3	

Notes: Temperature of Drying: 110° Celsius

a subsidiary of Geocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-289 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/21/10 Checked By: njh

Depth: 0-2 ft Test Id: 183148

Test Comment: -

Sample Description: Wet, very dark grayish brown clay

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	1.3	12.2	86.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	99		
#10	2.00	98		
#20	0.85	98		
#40	0.42	97		
#60	0 25	94		
#100	0.15	92		
#200	0.075	87		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
-	0.0335	74		
633	0.0195	68		
1944)	0.0118	61		
144	0,0085	55		
	0.0060	48		
	0.0044	39		
245	0 0032	35		
411	0.0015	31		

Coe	fficients	
D ₈₅ = 0.0678 mm	$D_{30} = N/A$	
D ₆₀ = 0.0111 mm	$D_{15} = N/A$	
D ₅₀ = 0.0066 mm	$D_{10} = N/A$	
Cu = N/A	$C_C = N/A$	

ASTM fat clay (CH)

AASHTO Clayey Soils (A-7-5 (81))

Sample/Test Description
Sand/Gravel Particle Shape : --Sand/Gravel Hardness : ---

a subsiliary of Geocomp Corp rat in

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Location:Tinicum to Marcus Hook Ranges, PAProject No:GTX-9915Boring ID:CB-289Sample Type: jarTested By:camSample ID:S-1Test Date:06/21/10Checked By:njh

Depth: 0-2 ft Test Id: 183141

Test Comment: -

Sample Description: Wet, very dark grayish brown clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-1	CB-289	0-2 ft	138	107	36	71	1	fat clay (CH)

Sample Prepared using the WET method

3% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

a subsidiary of Teocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-289 Sample Type: jar Tested By: jbr Sample ID:S-2 Test Date: 06/23/10 Checked By: njh

Depth: 2-2 ft 11 in Test Id: 183152

Test Comment: ---

Sample Description: Moist, very dark grayish brown gravel with silt and sand

Sample Comment: Removed one 3" rock from sample

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
-	59.6	31.4	9.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37,50	100		
1 in	25.00	58		
0.75 in	19.00	54	1	
0.5 in	12.50	51		
0 375 in	9.50	51		
#4	4.75	40		
#10	2.00	35		
#20	0.85	30	1	
#40	0.42	23		
#60	0.25	17		
#100	0.15	13		
#200	0 075	9		

Coe	fficients
D ₈₅ = 32.4288 mm	$D_{30} = 0.8321 \text{ mm}$
D ₆₀ = 25.4544 mm	$D_{15} = 0.2052 \text{ mm}$
D ₅₀ = 8.9236 mm	$D_{10} = 0.0916 \text{ mm}$
Cu =277.886	C _c =0.297

ASTM N/A Classification

AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-292 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

Depth: 0-2 ft Test Id: 183153

Test Comment: --

Sample Description: Moist, very dark grayish brown gravel with silt and sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	% Sand	% Silt & Clay Size
	70.3	23.1	6.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1_5 in	37.50	100		
1 in	25.00	73		
0 75 in	19 00	60		
0.5 in	12.50	41		
0,375 in	9.50	39		
#4	4.75	30		
#10	2.00	24		
#20	0.85	20		
#40	0.42	16		
#60	0.25	13		
#100	0.15	10		
#200	0.075	7		

Coeff	icients
D ₈₅ = 29.8438 mm	$D_{30} = 4.8763 \text{ mm}$
D ₆₀ = 19.1189 mm	$D_{15} = 0.3386 \text{ mm}$
D ₅₀ =15.2660 mm	$D_{10} = 0.1570 \text{ mm}$
C _u =121.776	C _c =7.922

<u>ASTM</u>	N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

Classification

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape : ROUNDED

A Michigary of Treoverny Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-292 Sample Type: jar Tested By: jbr Sample ID:S-2 Test Date: 06/23/10 Checked By: njh

Depth: 2-2 ft 10 in Test Id: 183154

Test Comment: --

Sample Description: Moist, dark olive gray gravel with silt and sand

Sample Comment: Removed one 2" rock from sample

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	67.3	26.0	6.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37,50	100		
1 in	25 00	86		
0.75 in	19.00	75		
0.5 in	12.50	59		
0.375 in	9.50	48		
#4	4.75	33		
#10	2.00	25		
#20	0.85	21		
#40	0.42	18		
#60	0.25	15		
#100	0.15	11		
#200	0.075	7	3	

Coefficients					
D ₈₅ = 24.4588 mm	$D_{30} = 3.5423 \text{ mm}$				
D ₆₀ = 12.9218 mm	$D_{15} = 0.2654 \text{ mm}$				
D ₅₀ = 10.0123 mm	$D_{10} = 0.1350 \text{ mm}$				
Cu =95.717	$C_c = 7.193$				

ASTM N/A Classification

AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED

Client: O'Brien & Gere Engineering

Delaware River Deepening Project Project:

GTX-9915 Location: Tinicum to Marcus Hook Ranges, PA Project No: Boring ID: CB-293 Sample Type: jar Tested By:

06/21/10 Checked By: njh Sample ID:S-2 Test Date: Depth: 2-4 ft Test Id: 183150

Test Comment:

Moist, very dark grayish brown silt with sand Sample Description:

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
	0.0	16.1	83.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	99		
#40	0.42	98		
#60	0.25	97		
#100	0.15	93		
#200	0.075	84		
	Particle Size (mm)	Percent Finer	Spec Percent	Complies
E10.	0.0324	57		
	0.0202	44		
	0.0118	34		
Pre-	0 0086	29		
No.	0 0061	23		
101	0.0044	18		
***	0.0032	16		
***	0.0015	13		
			1	
	The state of the s			

Coefficients					
D ₈₅ = 0.0816 mm	D ₃₀ = 0.0094 mm				
$D_{60} = 0.0354 \text{ mm}$	D ₁₅ = 0.0027 mm				
$D_{50} = 0.0250 \text{ mm}$	$D_{10} = 0.0007 \text{ mm}$				
$C_u = N/A$	$C_c = N/A$				

<u>Classification</u> elastic silt with sand (MH) <u>ASTM</u> AASHTO Clayey Soils (A-7-5 (31))

Sample/Test Description
Sand/Gravel Particle Shape: ---Sand/Gravel Hardness: ---

slibsi liary of Leocomp Corpo ation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-293 Sample Type: jar Tested By: cam Sample ID:S-2 Test Date: 06/18/10 Checked By: njh

Depth: 2-4 ft Test Id: 183143

Test Comment: ---

Sample Description: Moist, very dark grayish brown silt with sand

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2	CB-293	2-4 ft	59	70	44	26	1	elastic silt with sand (MH)

Sample Prepared using the WET method

2% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

a sul's the of Crocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Region ID: CR-295

Sample Type: jar. Tested By: jbr.

Boring ID: CB-295 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/23/10 Checked By: njh Depth: 0-2 ft Test Id: 183155

Depth: 0-2 ft
Test Comment: ---

Sample Description: Moist, very dark grayish brown gravel with silt and sand

Sample Comment: Removed one 2" rock from sample

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	55.0	39.1	5.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25.00	75		
0.75 in	19.00	60		
0.5 in	12.50	51		
0 375 in	9,50	49		
#4	4.75	45		
#10	2.00	42		
#20	0.85	37		
#40	0.42	27		
#60	0.25	19		
#100	0.15	12		
#200	0.075	6		

<u>Coefficients</u>					
D ₈₅ = 29.3222 mm	$D_{30} = 0.5135 \text{ mm}$				
D ₆₀ = 19.1318 mm	$D_{15} = 0.1891 \text{ mm}$				
D ₅₀ = 10.3724 mm	$D_{10} = 0.1208 \text{ mm}$				
C _u =158.376	$C_c = 0.114$				

ASTM	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED

a substillery of Geolomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

183156

Boring ID: CB-296 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

Depth: 0-2 ft Test Id:

Test Comment: ---

Sample Description: Moist, dark olive brown gravel with silt and sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

%Cobble	%Gravel	% Sand	% Silt & Clay Size
	54.7	38.6	6.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25.00	86		
0.75 in	19 00	69		
0.5 in	12.50	61		
0.375 in	9.50	54		
#4	#4 4.75			
#10	2.00	36		
#20	0.85	28		
#40	0.42	20		
#60	0.25	13		
#100	0.15	9		
#200	0.075	7		

Coef	ficients
D ₈₅ = 24.4882 mm	$D_{30} = 1.0636 \text{ mm}$
D ₆₀ = 12.1650 mm	$D_{15} = 0.2874 \text{ mm}$
D ₅₀ = 6.9230 mm	$D_{10} = 0.1642 \text{ mm}$
Cu =74.086	$C_c = 0.566$

ASTM	Classification N/A
AASHTO	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED

a state of the potent Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-296 Sample Type: jar Tested By: jbr Sample ID:S-2 Test Date: 06/21/10 Checked By: njh

Depth: 2-4 ft Test Id: 183157

Test Comment: --

Sample Description: Moist, olive brown silty clayey sand with gravel

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
	36.6	39.5	23.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19 00	100		
0.5 in	12 50	79		
0.375 in	9.50	70		
#4	4.75	63		
#10	2.00	57		
#20	0.85	51		
#40	0.42	43		
#60	0.25	37		
#100	0.15	30		
#200	0 075	24		

Coe	fficients
D ₈₅ = 14,1326 mm	$D_{30} = 0.1443 \text{ mm}$
$D_{60} = 3.0802 \text{ mm}$	$D_{15} = N/A$
D ₅₀ = 0.7871 mm	$D_{10} = N/A$
Cu =N/A	C _c =N/A

ASTM	<u>Classification</u> Silty, clayey sand with gravel (SC-SM)
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape: ROUNDED

a subsidium (Coulon up Composition)

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

183144

Boring ID: CB-296 Sample Type: jar Tested By: Sample ID:S-2 Test Date: 06/23/10 Checked By: njh Test Id:

Test Comment:

Depth : 2-4 ft

Sample Description: Moist, olive brown silty clayey sand with gravel

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Lïquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2	CB-296	2-4 ft	5	21	15	6	-2	Silty, clayey sand with gravel (SC-SM)

Sample Prepared using the WET method

57% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

a 3-bsid Try of G recomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-298 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

Depth : 0-2 ft Test Id: 183158

Test Comment: ---

Sample Description: Moist, very dark grayish brown gravel with silt and sand

Sample Comment: Removed one 2" rock from sample

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
	53.6	41.0	5.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25.00	90		
0.75 in	19.00	75		
0.5 in	12.50	63		
0.375 in	9 50	58		
#4	4_75	46		
#10	2.00	33		
#20	0.85	24		
#40	0.42	17		
#60	0.25	12		
#100	0.15	8		
#200	0.075	5		

Coefficients					
D ₈₅ = 22.9168 m	m D ₃₀	=1.4796 mm			
D ₆₀ = 10.4558 m	im D ₁₅	=0.3495 mm			
D ₅₀ = 5.8495 mn	n D ₁₀	=0.1951 mm			
Cu =53.592	Cc	=1.073			

<u>ASTM</u>	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ROUNDED

a subsidiary of Geo simp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Location:Tinicum to Marcus Hook Ranges, PAProject No:GTX-9915Boring ID: CB-298Sample Type: jarTested By:jbrSample ID:S-2ATest Date:06/23/10Checked By:njh

Depth: 2-3 ft Test Id: 183149

Test Comment: --

Sample Description: Moist, dark olive brown gravel with silt and sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	% Sand	% Silt & Clay Size
_	54.1	40.2	5.7

Sieve Name	eve Name Sieve Size, mm		Spec. Percent	Complies
1.5 in	37,50	100		
1 in	25.00	91		
0 75 in	19 00	74		
0.5 in	12 50	66		
0 375 in	9.50	59		
#4	4.75	46		
#10	2.00	33		
#20	0.85	25		
#40	0.42	17		
#60	0.25	12		
#100	0.15	8		
#200	0.075	6		

Coefficients					
D ₈₅ = 22.6257 mm	$D_{30} = 1.3866 \text{ mm}$				
D ₆₀ = 9.7866 mm	$D_{15} = 0.3420 \text{ mm}$				
D ₅₀ = 5.8877 mm	$D_{10} = 0.1918 \text{ mm}$				
Cu =51.025	$C_{c} = 1.024$				

ASTM	Classification Well-graded gravel with silt and sand (GW-GM)
AASHTO	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED

a subsidility of Geocomp Co. poration

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-298 Sample Type: jar Tested By: cam Sample ID:S-2A Test Date: 06/21/10 Checked By: njh

Test Id: 183142

Project No:

GTX-9915

Test Comment: --

Depth: 2-3 ft

Sample Description: Moist, dark olive brown gravel with silt and sand

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2A	CB-298	2-3 ft	6	n/a	n/a	n/a	n/a	Well-graded gravel with silt and sand (GW-GM)

83% Retained on #40 Sieve

Dry Strength: NONE Dilentancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

als libs lifa if of Teocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-298 Sample Type: jar Tested By: jbr Sample ID:S-2B Test Date: 06/23/10 Checked By: njh

Depth: 3-4 ft Test Id: 183159

Test Comment: -

Sample Description: Moist, dark olive gray silty sand

Sample Comment: --

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

6 Cobble	% Gravel	% Sand	% Silt & Clay Size
	6.6	65.8	27.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100	+	
0.5 in	12.50	94		1111
0.375 in	9.50	94		
#4	4.75	93		
#10	2.00	91		
#20	0.85	82		
#40	0.42	69		
#60	0,25	58		
#100	0,15	42		
#200	0.075	28		

Coefficients				
$D_{85} = 1.1100 \text{ mm}$	$D_{30} = 0.0839 \text{ mm}$			
$D_{60} = 0.2767 \text{ mm}$	$D_{15} = N/A$			
$D_{50} = 0.1932 \text{ mm}$	$D_{10} = N/A$			
Cu =N/A	$C_C = N/A$			

GTX-9915

Project No:

ASTM Silty sand (SM)

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ROUNDED

a subsilitary of Ceoul ap Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA GTX-9915 Project No:

183145

Boring ID: CB-298 Tested By: Sample Type: jar Sample ID:S-2B Test Date: 06/21/10 Checked By: njh Test Id:

Depth: 3-4 ft Test Comment:

Sample Description: Moist, dark olive gray silty sand

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2B	CB-298	3-4 ft	14	n/a	n/a	n/a	n/a	Silty sand (SM)

31% Retained on #40 Sieve Dry Strength: MEDIUM

Dilentancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

a substituty of Cascome Cosperation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Project No: Sample Type: jar Tested By: Boring ID: CB-299 Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

Depth: 0-2 ft Test Id: 183160

Test Comment:

Moist, very dark grayish brown gravel with silt and sand Sample Description:

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

%Cobble	% Gravel	%Sand	% Silt & Clay Size
	56.1	35.0	8.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37 50	100		
1 in	25.00	74		
0.75 in	19.00	63		
0.5 in	12 50	54		
0.375 in	9 50	51		
#4	4 75	44		
#10	2.00	38		
#20	0.85	33		
#40	0.42	27		
#60	0.25	22		
#100	0 15	14		
#200	0.075	9		
		A constant of the constant of		

<u>Coefficients</u>				
D ₈₅ = 29.6440 mm	$D_{30} = 0.6131 \text{ mm}$			
D ₆₀ = 16.4288 mm	D ₁₅ =0.1598 mm			
D ₅₀ = 8.6817 mm	$D_{10} = 0.0868 \text{ mm}$			
Cu =189.272	C _C =0.264			

<u>ASTM</u>	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

a subsidility of Deocom L Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Location:Tinicum to Marcus Hook Ranges, PAProject No:GTX-9915Boring ID:CB-301Sample Type: jarTested By:jbrSample ID:S-1Test Date:06/23/10Checked By:njh

Depth: 0-2 ft Test Id: 183161

Test Comment: ---

Sample Description: Moist, dark olive brown gravel with silt and sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
	61.1	33.1	5.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1,5 in	37.50	100		
1 in	25.00	71		
0,75 in	19 00	67		
0.5 in	12 50	53		
0.375 in	9.50	47		
#4	4.75	39		
#10	2.00	32		
#20	0.85	26	1	
#40	0.42	17		
#60	0.25	11		
#100	0.15	8		
#200	0.075	6		

Coefficients			
$D_{85} = 30.3725 \text{ mm}$	$D_{30} = 1.5795 \text{ mm}$		
D ₆₀ = 15.4170 mm	$D_{15} = 0.3568 \text{ mm}$		
$D_{50} = 10.9722 \text{ mm}$	$D_{10} = 0.2004 \text{ mm}$		
$C_u = 76.931$	$C_{c} = 0.807$		

AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

Classification

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED

a sur sir lary of Geo. Unp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-301 Sample Type: jar Tested By: jbr Sample ID:S-2 Test Date: 06/23/10 Checked By: njh

Depth: 2-4 ft Test Id: 183162

Test Comment: --

Sample Description: Moist, dark ofive brown gravel with silt and sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25 00	54		
0.75 in	19.00	54		
0.5 in	12.50	43		
0.375 in	9 50	38		
#4	4.75	34		
#10	2,00	29		
#20	0.85	25		
#40	0.42	20		
#60	0,25	17		
#100	0.15	13	Ì	
#200	0.075	7		

Coef	ficients
D ₈₅ = 32.8875 mm	$D_{30} = 2.4585 \text{ mm}$
D ₆₀ = 26.4260 mm	$D_{15} = 0.1948 \text{ mm}$
D ₅₀ = 16.4160 mm	$D_{10} = 0.1064 \text{ mm}$
Cu =248.365	$C_c = 2.150$

ASTM	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED

a subsidery of Geomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-303 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

Depth: 0-2 ft Test Id: 183163

Test Comment: --

Sample Description: Moist, dark olive brown sand with silt and gravel

Sample Comment: Removed one 2" rock from sample

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
_	35.2	54.0	10.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	87		
0.5 in	12.50	76		
0.375 in	9.50	71		
#4	4.75	65		
#10	2.00	57		
#20	0.85	46		
#40	0.42	33		
#60	0.25	22		
#100	0.15	16		
#200	0,075	11		

Coefficients				
D ₈₅ = 17.3862 mm	$D_{30} = 0.3672 \text{ mm}$			
D ₆₀ = 2.7332 mm	D ₁₅ = 0.1325 mm			
D ₅₀ = 1.1318 mm	$D_{10} = 0.0676 \text{ mm}$			
Cu =40.432	C _C =0.730			

Project No:

GTX-9915

ASTM	Classification N/A
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-b (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED

a sub-id ary of Geocomp Corpo.at on

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project
Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-305 Sample Type: jar Tested By: jbr Sample ID:S-1 Test Date: 06/02/10 Checked By: jdt

Depth: 0-2 ft Test Id: 181651

Test Comment: --

Sample Description: Moist, dark brown gravel with sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
-	80.6	17.0	2.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37 50	100	+	
1 in	25.00	60		
0.75 in	19.00	57		
0.5 in	12.50	33		
0.375 in	9.50	29	F	
#4	4.75	19		
#10	2.00	13		
#20	0.85	9		
#40	0.42	7		
#60	0.25	6		
#100	0.15	4		
#200	0.075	2		

Coefficients			
D ₈₅ = 32.1845 mm	$D_{30} = 10.3677 \text{ mm}$		
D ₆₀ = 24.5117 mm	$D_{15} = 2.7098 \text{ mm}$		
D ₅₀ = 16.7631 mm	$D_{10} = 1.0949 \text{ mm}$		
$C_u = 22.387$	$C_c = 4.005$		

Project No:

GTX-9915

ASTM	<u>Classification</u> Poorly graded gravel with sand (GP)
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED

subsidility of Leocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-305 Sample Type: jar Tested By: jbr Sample ID:S-2 Test Date: 06/02/10 Checked By: jdt

Depth: 2-4 ft Test Id: 181652

Test Comment: --

Sample Description: Moist, dark brown gravel with sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
_	80.1	17.2	2.7

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37,50	100		
1 in	25.00	67		
0.75 in	19.00	47		
0.5 in	12.50	38		
0.375 in	9.50	29		
#4	4.75	20		
#10	2.00	13		
#20	0.85	9		
#40	0.42	7		
#60	0.25	6		
#100	0.15	4		
#200	0.075	3	1	

<u>Coefficients</u>		
D ₈₅ = 31.2320 mm	$D_{30} = 9.8449 \text{ mm}$	
D ₆₀ = 22.7163 mm	$D_{15} = 2.6685 \text{ mm}$	
D ₅₀ = 19.7092 mm	$D_{10} = 1.1194 \text{ mm}$	
Cu =20.293	C _C =3.812	

Project No:

GTX-9915

ASTM	<u>Classification</u> Poorly graded gravel with sand (GP)
AASHTO	Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED
Sand/Gravel Hardness: HARD

a subsidiry of Geocomp Curporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-305 Sample Type: jar Tested By: cam

Test Id:

181641

Boring ID: CB-305 Sample Type: jar Tested By: car Sample ID:S-2 Test Date: 06/02/10 Checked By: jdt

Test Comment: --

Depth: 2-4 ft

Sample Description: Moist, dark brown gravel with sand

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2	CB-305	2-4 ft	10	n/a	n/a	n/a	n/a	Poorly graded gravel with sand (GP)

93% Retained on #40 Sieve

Dry Strength: NONE
Dilentancy: RAPID
Toughness: n/a

The sample was determined to be Non-Plastic

a subs.d a.) of Geocomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project
Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-305 Sample Type: jar Tested By: jbr Sample ID:S-3 Test Date: 06/02/10 Checked By: jdt

Depth: 4-6 ft Test Id: 181653

Test Comment: -

Sample Description: Moist, dark brown gravel with sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	77.1	18.6	4.3

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
2.5 in	63.00	100		
2 in	50,00	59		
1.5 in	37.50	38		
1 in	25.00	38		
0.75 in	19.00	38		
0.5 in	12.50	31		
0.375 in	9.50	28		
#4	4.75	23		
#10	2.00	17		
#20	0.85	13		
#40	0.42	9		
#60	0.25	7		
#100	0.15	6		
#200	0.075	4		

<u>Coefficients</u>				
D ₈₅ =57.8415 mm	$D_{30} = 11.5271 \text{ mm}$			
$D_{60} = 50.1654 \text{ mm}$	D ₁₅ = 1.3436 mm			
D ₅₀ =44.1320 mm	$D_{10} = 0.4744 \text{ mm}$			
$C_{11} = 105.745$	$C_c = 5.583$			

Project No:

GTX-9915

<u>ASTM</u>	<u>Classification</u> Poorly graded gravel with sand (GP)
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED
Sand/Gravel Hardness: HARD

a substituty of Teocomp Corporat in

Client: O'Brien & Gere Engineering

Delaware River Deepening Project Project:

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

183151

Boring ID: CB-306 Sample Type: jar Tested By: Sample ID:S-1 Test Date: 06/21/10 Checked By: njh Test Id:

Test Comment:

Depth: 0-2 ft

Sample Description: Moist, yellowish red sandy clay

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	% Sand	% Silt & Clay Size
_	6.0	26.9	67.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4 75	94		
#10	2.00	91		
#20	0.85	86		
#40	0.42	79		
#60	0.25	75		
#100	0.15	71		
#200	0.075	67		
***	Particle Size (mm)	Percent Finer	Spec Percent	Complies
	0,0312	62		
	0 0175	57		
244	0.0111	53		
***	0.0079	51		
t-97	0.0057	46		
+	0 0041	41		
260	0.0030	37		
500	0.0014	28	-	

<u>Coefficients</u>				
D ₈₅ = 0.7908 mm	$D_{30} = 0.0017 \text{ mm}$			
D ₆₀ = 0.0242 mm	$D_{15} = N/A$			
D ₅₀ = 0.0076 mm	$D_{10} = N/A$			
Cu =N/A	$C_C = N/A$			

<u>Classification</u> Sandy fat clay (CH) <u>ASTM</u> AASHTO Clayey Soils (A-7-5 (42))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

a subs III ry of Geoco.mp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-306 Sample Type: jar Tested By: cam Sample ID:S-1 Test Date: 06/23/10 Checked By: njh

GTX-9915

Project No:

Depth: 0-2 ft Test Id: 183146

Test Comment: --

Sample Description: Moist, yellowish red sandy clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Līquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-1	CB-306	0-2 ft	53	88	35	53	0	Sandy fat clay (CH)

Sample Prepared using the WET method

21% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

a subsectory of Tiencome Contention

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Location:Tinicum to Marcus Hook Ranges, PAProject No:GTX-9915Boring ID:CB-306Sample Type: jarTested By:jbrSample ID:S-2Test Date:06/23/10Checked By:njh

Depth: 2-4 ft Test Id: 183164

Test Comment:

Sample Description: Moist, mottled bluish gray and yellowish brown sandy clay

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	% Sand	% Silt & Clay Size
_	0.0	31.9	68.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	95		
#40	0.42	88		
#60	0.25	82		
#100	0.15	75		
#200	0.075	68		

Coefficients				
$D_{85} = 0.3284 \text{ mm}$	$D_{30} = N/A$			
$D_{60} = N/A$	$D_{15} = N/A$			
$D_{50} = N/A$	$D_{10} = N/A$			
$C_u = N/A$	$C_{C} = N/A$			

<u>Classification</u> <u>ASTM</u> Sandy fat clay (CH)

AASHTO Clayey Soils (A-7-6 (19))

Sample/Test DescriptionSand/Gravel Particle Shape: ---

Sand/Gravel Hardness : ---

a sul sidility of Leocomp Corporation

Client: O'Brien & Gere Engineering
Project: Delaware River Deepening Project
Location: Tinicum to Marcus Hook Ranges, PA
Project No:

Boring ID: CB-306 Sample Type: jar Tested By: cam Sample ID:S-2 Test Date: 06/18/10 Checked By: njh Depth: 2-4 ft Test Id: 183147

GTX-9915

Test Comment: ---

Sample Description: Moist, mottled bluish gray and yellowish brown sandy clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2	CB-306	2-4 ft	38	53	28	25	0	Sandy fat clay (CH)

Sample Prepared using the WET method

12% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

a subsidiary of Geocomp Corporation

Client: O'Brien & Gere Engineering

Delaware River Deepening Project Project: Location: Project No: Tinicum to Marcus Hook Ranges, PA

Sample Type: jar Boring ID: CB-308 Tested By: 06/02/10 Checked By: jdt Test Date: Sample ID:S-1 Test Id:

181648

Depth: 0-2 ft Test Comment:

Sample Description: Moist, dark brown sand

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	%Sand	% Silt & Clay Size
_	_	95.2	4.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	98		
#40	0 42	96		
#60	0.25	57		
#100	0.15	21		
#200	0.075	5		

Coe	fficients
D ₈₅ = 0.3667 mm	$D_{30} = 0.1702 \text{ mm}$
D ₆₀ = 0.2599 mm	$D_{15} = 0.1158 \text{ mm}$
D ₅₀ = 0.2259 mm	$D_{10} = 0.0936 \text{ mm}$
Cu =2.777	C _C =1.191

GTX-9915

Classification
Poorly graded sand (SP) **ASTM**

AASHTO Fine Sand (A-3 (0))

Sample/Test Description

Sand/Gravel Particle Shape : -

Sand/Gravel Hardness : ---

a subsetiery of Decelop Europation

Client: O'Brien & Gere Engineering

Delaware River Deepening Project Project: Location: Tinicum to Marcus Hook Ranges, PA

Project No: Tested By: jbr Boring ID: CB-308 Sample Type: jar Test Date: 06/02/10 Checked By: jdt Sample ID:S-2A

Test Id: 181649 Depth: 2-4 ft

Test Comment:

Sample Description: Moist, dark brown sand

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
	0.0	96.8	3.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	98		
#60	0.25	53		
#100	0.15	14		
#200	0.075	3		

Coe	fficients
D ₈₅ = 0.3656 mm	$D_{30} = 0.1858 \text{ mm}$
D ₆₀ = 0.2723 mm	$D_{15} = 0.1529 \text{ mm}$
D ₅₀ = 0.2412 mm	$D_{10} = 0.1183 \text{ mm}$
Cu = 2.302	C _C =1.072

<u>Classification</u> Poorly graded sand (SP) **ASTM**

AASHTO Fine Sand (A-3 (0))

Sample/Test Description

Sand/Gravel Particle Shape: -

Sand/Gravel Hardness: ---

a subsidility of Grecomp Corporation

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project Location: Tinicum to Marcus Hook Ranges, PA

Boring ID: CB-308 Sample Type: jar Tested By: can Sample ID:S-2A Test Date: 06/02/10 Checked By: jdt

GTX-9915

Project No:

Depth: 2-4 ft Test Id: 181639

Test Comment: --

Sample Description: Moist, dark brown sand

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	S-2A	CB-308	2-4 ft	26	n/a	n/a	n/a	n/a	Poorly graded sand (SP)

2% Retained on #40 Sieve

Dry Strength: NONE Dilentancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

a subsidiary of Leocomp Composition

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location: Tinicum to Marcus Hook Ranges, PA Project No: GTX-9915

Boring ID: CB-308 Sample Type: jar Tested By: jbr Sample ID:S-2B Test Date: 06/02/10 Checked By: jdt

Depth: 2-4 ft Test Id: 181650

Test Comment: --

Sample Description: Moist, dark gray clay

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99		
#100	0.15	97		
#200	0.075	93		

	Coefficients
$D_{85} = N/A$	$D_{30} = N/A$
$D_{60} = N/A$	$D_{15} = N/A$
$D_{50} = N/A$	$D_{10} = N/A$
Cu =N/A	C _C = N/A

<u>Classification</u>
ASTM fat clay (CH)

AASHTO Clayey Soils (A-7-5 (61))

Sample/Test Description

Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness : ---

a subsidiary of Geocomp Corpora lo

Client: O'Brien & Gere Engineering

Project: Delaware River Deepening Project

Location:Tinicum to Marcus Hook Ranges, PAProject No:GTX-9915Boring ID:CB-308Sample Type: jarTested By:camSample ID:S-2BTest Date:06/03/10Checked By:n/a

 Sample ID:S-2B
 Test Date:
 06/03/1

 Depth:
 2-4 ft
 Test Id:
 181640

Test Comment: ---

Sample Description: Moist, dark gray clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

	Soil Classif	Liquidity Index	Plasticity Index	Plastic Limit	Liquid Limit	Matural Moisture Content,%	Depth	Boring	Sample ID	Symbol
at clay (CH)	fat clay	1	50	34	84	76	2-4 ft	CB-308	S-2B	*
										*

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

07/06/10 rock core pdw daa Sample Type: Checked By: Tested By: Test Date: Tinicum to Marcus Hook Ranges, PA Delaware River Deepening Project O'Brien & Gere Engineering 9915 Project Location Project Name: GTX #: Client:

Point Load Strength Index of Rock by ASTM D 5731

Boring No. Sample No.	Depth, ft.	Test No.	Test Type	Width (W), in.	Width (W), Depth (D), Load (P), in.	Failure Load (P), Ib	De ² ,	De,	I _{s,} psi	L	I _{s(50),} psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
	6.34-6.44	PLA - 4	Axial	2.49	1.23	2298	3.89	1.97	591	1.001	591	19	11,200
				PLA - 4 after	2 2 - 2 2 - 2 2 - 2 2 2 3 3 3 3 3 3 3 3			28 (in.)		Intact material failure	rial failure		

Notes:

Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D 5731 Table 1. $D_e =$ the equivalent core diameter

 $I_{\text{s}}=$ the uncorrected point load strength F = the size correction factor

 $I_{s(50)}=$ the size corrected point load strength index

Client:	O'Brien & Gere Engineering	Test Date:	07/06/10	
Project Name:	Delaware River Deepening Project	Tested By:	daa	
Project Location	Tinicum to Marcus Hook Ranges, PA	Checked By:	pdm	
GTX #:	9915	Sample Type:	rock core	

Point Load Strength Index of Rock by ASTM D 5731

Estimated Compressive Strength, psi	12,200	
Generalized Correction Factor, K	19	
I _{s(50),} psi	646	rial fallure
IL.	1,006	Intact material fallure Shale
Is, psi	642	
D _{e,}	2.00	± C.m.
D _e 2,	3.98	5
Failure Load (P), Ib	2554	PLA 5
Width (W), Depth (D), Load (P), lb	1.26	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Width (W), in.	2.48	after - 5
Test	Axial	
Test No.	PLA - 5	
Depth, ft.	2.12-2.22	5
Sample No.	R-1	
Boring No.	CB-303	PLA - 5 before

Notes:

Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D 5731 Table 1. $D_e = \text{the equivalent core}$ $I_s = \text{the uncorrected point load strength}$ F = the size correction factor $I_{s(50)} = \text{the size corrected point load strength index}$

esubsidiary of Grecomic Contraction

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/06/10	
Tested By:	daa	
Checked By:	mpd	
Sample Type:	Rock Core	
Sample Description:		
Strain Rate:	1%/min.	

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D 3967

Boring ID	Sample ID	Depth, ft.	Test No.	Thickness (L),		Diameter (D), in.	Failure Load (P), lb.	Splitting Tensile Strength, psi	
CB-287	R-1	0.80-0.90	ST-1	1.24	1.23	1.23	2.46	4536	955
CB-287	R-2	5.09-5.20	ST-2	1.30	1.31	1.30	2.48	9474	1,870
CB-288	R-1			1.25 1.25 1.25		1.25	2.49	7917	1,620

ST-1

Intact material failure

ST-2

Intact material failure

ST-3

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: Test Date: 07/06/10 Tested By: daa Checked By: Sample Type: Rock Core ---Sample Description: Strain Rate: 1%/min.

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D 3967

Boring ID	Sample ID	Depth, ft.	Test No.	Т	Thickness (L)),	Diameter (D), in.	Failure Load (P), lb.	Splitting Tensile Strength, psi
CB-288	R-1	4.02-4.12	ST-4	1.22	1.22	1.22	2.50	5653	1,180
CB-289	R-2	7.60-7.69	ST-5	1.08			2.48	5313	1,260
CB-290	R-2	1.80-1.89	ST-6	1.12			2.48	6798	1,560

ST-4

Intact material failure

ST-5

Intact material failure

ST-6

is ibsidiary if a receip Commanily

Client:	O'Brien & Gere Engineering
Project Name:	Delaware River Deepening Project
Project Location:	Tinicum to Marcus Hook Ranges, PA
GTX #:	9915
Test Date:	07/06/10
Tested By:	daa
Checked By:	mpd
Sample Type:	Rock Core
Sample Description:	
Strain Rate:	1%/min.

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D 3967

Boring ID	Sample ID	Depth, ft.	Test No.	Т	Thickness (L) in.),	Diameter (D), in.	Failure Load (P), lb.	Splitting Tensile Strength psi
CB-291	R-1	2.60-2.71	ST-7	1.32	1.32	1.32	2.49	5402	1,043
CB-292	R-1	3.40-3.51	ST-8	ST-8 1.28 1.28	1.28	1.27	27 2.50 37	3793	758
CB-294	R-1	1.30-1.40	ST-9	1.20	1.20	1.21	2.47	3103	663

ST-7

Intact material failure

ST-8

Intact material failure and Discontinuity failure

ST-9

a substriary of Geocomp Constantion

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/06/10	
Tested By:	daa	
Checked By:	mpd	
Sample Type:	Rock Core	
Sample Description:		
Strain Rate:	1%/min.	

Splitting Tensile Strength of Intact Rock Core Specimens by ASTM D 3967

Boring ID	Sample ID	Depth, ft.	Test No.	٦	Thickness (L) in.),	Diameter (D), in.	Failure Load (P), Ib.	Splitting Tensile Strength, psi
CB-297	R-2	5.07-5.17	ST-10	1.27	1.27	1.27	2.48	7456	1,510
CB-300	R-2	4.79-4.89	ST-11	1.22	1.23	1.22	2.48	2414	506
CB-307	R-2	4.96-5.05	ST-12	1.12	1.12	1.11	2.49	2041	468

ST-10

Intact material failure and discontinuity failure

ST-11

Intact material failure

ST-12

Client: O'Brien & Gere Engineering

Project Name: Delaware River Deepening Project

Project Location: Tinicum to Marcus Hook Ranges, PA

GTX #: 9915 Test Date: 07/03/10

Test Date: 07/03/
Tested By: daa
Checked By: mpd

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D 7012 Method C

Boring ID	Sample ID	Depth, ft	Bulk Density, lb/ft ³	Compressive Strength, psi	Failure Type	In conformance with ASTM D 4543
CB-287	R-1	3.52-3.98	165	22,727	1	YES
CB-288	R-1	0.12-0.57	164	22,624	1	NO *
CB-288	R-1	1.32-1.78	164	25,971	1	YES
CB-289	R-1	5.58-6.05	171	15,241	1	YES
CB-289	R-2	7.96-8.42	171	17,134	1	YES
CB-290	R-1	2.88-3.32	184	31,331	1	YES
CB-290	R-2	1.03-1.48	182	6,643	2	NO *
CB-290	R-3	6.40-6.81	164	8,520	1 & 2	NO *
CB-291	R-2	5.52-5.98	168	11,487	2	YES
CB-294	R-2	4.45-4.91	171	9,964	1	NO *

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure (See attached photographs)

* The as-received core did not meet the ASTM side straightness tolerance.

Client: O'Brien & Gere Engineering

Project Name: Delaware River Deepening Project
Project Location: Tinicum to Marcus Hook Ranges, PA

GTX #: 9915

Test Date: 07/03/10
Tested By: daa

Checked By: mpd

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D 7012 Method C

Boring ID	Sample ID	Depth, ft	Bulk Density, lb/ft ³	Compressive Strength, psi	Failure Type	In conformance with ASTM D 4543
CB-294	R-2	5.08-5.46	167	13,137	1	NO *
CB-295	R-1	3.14-3,58	166	11,152	1	NO *
CB-295	R-1	5.72-6.18	174	5,524	1	NO *
CB-297	R-1	1.62-1.96	186	17,023	1	NO *
CB-300	R-1	0.02-0.48	168	3,348	2	NO *
CB-300	R-1	1.28-1.64	170	5,846	2	NO *
CB-301	R-1	3.54-3.96	164	5,234	2	YES
CB-301	R-1	4.54-5.00	164	13,582	1	YES
CB-303	R-2	5.03-5.38	166	14,630	1	YES
CB-307	R-2	3.95-4.41	170	14,145	2	YES

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure (See attached photographs)

* The as-received core did not meet the ASTM side straightness tolerance.

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-287	
Sample ID:	R-1	
Depth, ft:	3.52-3.98	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brian & Gere Engineering
Delaware River Deepening Project
Tinicum to Marcus Hook Ranges, PA
9915
CB-287
R-1
3.52-3.98
R-3
See photographs Cllent: Project Name: Project Location: GTX #: Boring ID: Sample ID:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	red.	2	Average	
specimen Length, in:	5.47	5.48	5.48	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.47	2.47	2.47	Is the maximum gap ≤ 0.02 in.? YES
pecimen Mass, g:	1137.28			
iulk Density, Ib/ft ³	165			Maximum difference must $be < 0.020$ in.
muth to Diameter Ratio:	2.2			Straightness Tolerance Met? YES

											5	na continuita in	מומושונים וחבי מובר עובו:	001	
END FLATNESS AND PARALLELISM (Procedure FP1)	LELISM (Proced	Ture FP1)													
END 1	-0.875	-0.750	-0.625	0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00030	0.00030	0.00020	0.00020	0.00010	-0.00010	0.00000	0.00000	0.0000	0.00000	0.0000	-0.00010	-0.00020	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	0.00030	0.00030	0.00030	0.00020	0.00020	0.00000	0.0000.0	0.00000	-0.00010	-0.00010	-0.00020	-0.00020	-0.00020	-0,00030	-0.00030
											Difference betwe-	en max and mir	n readings, in:		
											= 00	0.00060	≈ °06	0.00060	
END 2	-0.875	-0.750	0.625	-0.500	0.375	-0.250	-0.125	0.000	0.125		0.375 0.500 0.625	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000	0.0000	0.00000	0.00000	-0.00010	-0.00030	-0.00050	-0.00060
Diameter 2, in (rotated 90°)	0.00030	0.00030	0.00030	0.00020	0.00010	0.0000	0.00010	0.00000	0.0000		0.0000	-0.00010	-0.00010	-0.00030	-0.00030
											Difference between	еп тах алд т	n readings, in:		
											= 00	0.0008	= 006	0.0006	
											Maximum difference must be < 0.0020 in.	nce must be <	0.0020 in.	fference = +	0.00040
												Flatmace To	Flatonee Tolorance Met?	VEC	

y = -0.00032x + 0.00001

End 1 Diameter 1

0.00100

0.00200

1,00

0,50 0.75

-0.25 0,00 0.25 Diameter, in

-0.75 -0.50

-1.00

0.00000

Dial Gage Reading, in

0.00200

	-0.00032	-0.00036	0.00229	t? YES		0.00038	0.01891	0.00286	t? YES
DIAMETER 1	End 1: Slape of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Soherically Seated

y = -0.00036x - 0.00005

End 2 Diameter 1

0.75

0.50

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-1.00

-0.00100

Dial Gage Reading, in

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Paralle	(Calculated from End Flatness a	nd Parallelism me	elism measurements above)	ove)			
END 1 Difference,	Difference, Maximum and Minimum (In.) Diameter	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Dameter 1, in	0.00060	2.470	0.00024	0.014	YES		
Dlameter 2, In (rotated 90°)	0.00060	2.470	0.00024	0.014	YES	Perpendicularity Tolerance Met?	YES
END 2							
Slameter 1, in	0.00080	2.470	0.00032	0.019	YES		
Diameter 2, In (rotated 90°)	0.00060	2.470	0.00024	0.014	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-288	
Sample ID:	R-1	
Depth, ft:	0.12-0.57	

After cutting and grinding

After break

a subsidiary of Geocomp Corporation

Client:	O'Brien & Gere Engineering	Test Date:	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	еер
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdw
GTX #:	9915		
Boring ID:	CB-288		
Sample ID:	R-1		
Depth:	0.12-0.57 ft		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

JLK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.42	5.43	5,43	Maximum gap between side of core and reference surface plate:
Speckmen Diameter, in:	2.48	2.49	2.49	1s the maximum qap ≤ 0.02 in.? NO
pecimen Mass, g:	1138.21			
ulk Density, lb/ft ³	164			Maximum difference must be < 0.020 in.
anoth to Diameter Ratio:	2.2			Straightness Tolerance Met? NO

y = -0.00029x - 0.00007

End 1 Diameter 1

0.00000

0.00200

0.75 1.00

0.50

-0.75 -0.50

-1.00

0.00100

Dial Gage Reading, in

-0.00200

y = -0.00030x + 0.00003

End 2 Diameter 1

1 00

0.75

0.50

-0.25 0 00 0 25 Diameter, in

-0.75 -0.50

-1.00

-0.00100

Dial Gage Reading, in

-0.00029	-0.00030	0.00057	et? VES		-0.00009	-0.00010	0.00057	at? YES
End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	parallelism Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	(Calculated from End Flatness as	nd Parallelism me	asurements abo	ve)			
SND 1 Difference	Difference, Maximum and Minimum (in.) Diameter (in.) Slope	Diameter (in.)	Stope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
(rotated 90°)	0.00020	2.485	0.00008	0.005	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0,00060	2.485	0.00024	0.014	YES		
Diameter 2, in (rotated 90°)	0.00020	2,485	0.00008	0.005	YES		

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: 9915 Test Date: 07/03/10 Tested By: daa Checked By: mpd Boring ID: CB-288 Sample ID: R-1 Depth, ft: 1.32-1.78

After cutting and grinding

After break

Client:	O'Brien & Gere Engineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By:	Pdu
GTX #:	9915		
Boring ID:	CB-288		
Sample ID:	R-1		
Depth:	1.32-1.78 ft		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

JLK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, In:	5.48	5.49	5,49	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.49	2.50	2.50	Is the maximum gap < 0.02 in.?
specimen Mass, g:	1159.9			
Bulk Density, Ib/ft ³	164			Maximum difference must be < 0.020 in.
oth to Diameter Ratio:	2.2			Straightness Tolerance Met? YES

y = -0.00036x - 0.00003

End 1 Diameter 1

0.00200

0.00100

000000 -0.00100

Dial Gage Reading, in

0.875

0.875 -0.00040 -0.00030

-0.00036

-0.00034 -0.01948

0.00115

YES

DIAMETER 1	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated
End 1 Diameter 2 y=-0 00002x - 0.00004	00100	00000	00200	-100 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Diameter, in	y=-0 00007x - 0.00009	0,00200	0,00000	00200	-1,00 -0,75 -0,50 -0.25 0.00 0.25 0.50 0.75 1,00 Diameter, in

y = -0.00034x + 0.00001

End 2 Diameter 1

0.00200 0.00100 0.0000.0 -0.00100 -0.00200

Dial Gage Reading in

0.75

0.50

-0.25 0.00 0.25 Diameter, in

-0,50 -0 75

-1.00

-0 00200

0.00002

0.00401

0.00286

1.00 0.75

0.50

-0.25 0.00 0.25 Diameter, in

-1.00 -0.75 -0.50

YES

ERPENDICULARITY (Procedure P1)	(Calculated from End Flatness a	and Parallelism m.	easurements a	bove)			
END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope Any	rence, Maximum and Minimum (In.)	Dlameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00060	2.495	0.00024	0.014	YES		
Diameter 2, in (rotated 90°)	0.00020	2.495	0.00008	0.005	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00070	2,495	0.00028	0.016	YES		
Diameter 2, in (rotated 90°)	0.00030	2.495	0.00012	0.007	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-289	
Sample ID:	R-1	
Depth, ft:	5.58-6.05	

After cutting and grinding

After break

Client	O'Brien & Gere Englineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdu
GIX #:	5015		
Boring ID:	CB-289		
Sample ID:	R-1		
Depth:	5.58-6.05 ft		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

BULK DENSITY								DEVIATION FROM STRAIGHTNESS (Procedure S1)	OM STRAIGHTN	IESS (Procedu	re S1)				
	1		2		Avera)ge									
Specimen Length, in:	5.59	6	9.60		2.60	0			Maximum gap b	petween side of	core and referer	Maximum gap between side of core and reference surface plate:	**		
pecimen Diameter, in:	2.48	an	2.49	-	2.49	ø				Is the п	Is the maximum gap ≤ 0.02 in.2	0.02 in.2	YES		
Specimen Mass, g:	1221.66	99													
ulk Density, Ib/R ³	171										Maximum differ	Maximum difference must be < 0.020 in.	0.020 in.		
Length to Dismeter Ratio:	2.3											Straightness Tolerance Met?	olerance Met?	YES	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Procedu	ire FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	0.250	0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	-0.00010	-0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00020	0.00030	0.00030
Diameter 2. in (rotated 90°)	0.0000	-0.0000	-0.00010	-0.00010	0 00000	0 0000	0 00000	0 00000	0 0000	0.00010	0.00010	0.00010	0.0000	0,000,0	0.0000

min readings, in: 90° = 0.625 0.00020 0.00010

Difference between max and 0° = 0.00050

0.00030 0.00030

0.750 0.00020 0.00020 0.00050

0.375 0.500 0.625
0.00000 0.00010 0.00010
0.00020 0.00020 0.00020
Difference between max and min readings, in:
0 = 0.000 0 90 =

Maximum difference must be < 0.0020 0 90 =

Flatness Tolerance Met?

0.250 0.00000 0.00010

0.125 0.00000 0.00000

0.00000

-0.125 0.00000 0.00000

-0.250 -0.00010 0.00000

-0.375 -0.00020 0.00000

-0.500 -0.00020 0.00000

-0.625 -0.00020 -0.00010

-0.750 0.00030 0.00020

0.875

END 2 Diameter 1, in Diameter 2, in (rotated 90°)

0.0005 Difference = + 0.00030 P VES

	0.00028	0.00031	6.00172	YES		0.00023	0.00026	0.00172	YES
DIAMETER 1	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated

ERPENDICULARITY (Procedure	: P1) (Calculated from End Flatness :	and Parallelism me	asurements ab	(avar			
ND 1	END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope Ar	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	0
Diameter 1, in	0.00050	2.485	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00050	2.485	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00060	2.485	0.00024	0.014	YES		
Diameter 2, in (rotated 90°)	0,00050	2,485	0.00020	0.012	YES		

0.75

0 50

-0.25 0.00 0.25 Diameter, in

-0.50

-0.75

-1.00

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: 9915 07/03/10 Test Date: Tested By: daa Checked By: mpd Boring ID: CB-289 Sample ID: R-2 Depth, ft: 7.96-8.42

After cutting and grinding

After break

Client:	O'Brien & Gere Engineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By:	PdE
GTX #:	9915		
Boring ID:	CB-289		
Sample ID:	R-2		
Depth:	7.96-8.42 ft		
Visual Description:	Spe photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

IULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.47	5.48	5.48	Maximum gap between side of core and reference surface plate:
Specimen Dlameter, in:	2.48	2.48	2.48	Is the maximum qap ≤ 0.02 in.? YES
specimen Mass, g:	1191.82			
Ik Density, Ib/R ³	171			Maximum difference must be < 0.020 in.
Length to Diameter Ratio;	2.2			Straightness Tolerance Met? YES

Specimen Dlameter, in:	2.48	18	2,48	\$ \$	2.48	18			משלה היומיניים ליים ליים ליים ליים ליים ליים ליים	Is the m	Is the maximum gap ≤ 0.02 in.?	.02 in.?	YES		
Specimen Mass, g: Bulk Density, lb/R ³	1191.82	1.82									Maximum difference must be < 0.020 in.	nce must be <	0.020 in.		
Length to Diameter Ratio:	2.	2									Š	traightness T	Straightness Tolerance Met?	YES	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Proced	ure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, In	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0,00010	0.00010	0.00010	-0.00010	-0,00010	-0.00020
Diameter Z, In (rotated 90°)	0.00020	0.00020	0.00020	0.00020	0.00010	0.00010	0.00000	0.00000	0.00000	0.0000.0	0.00000	0.00000	0.00000	-0.00010	-0.00010
											Difference between max and min readings, in:	en max and mi	in readings, in:		
											□ ₀0	0.00020	= .06	0.00030	
END 2	0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, In	0.00000	0.00000	0.0000	0.00000	0.00000	0,0000	0.00000	0.00000	0.00000	0.0000.0	0.0000.0	0.0000	-0.00010	-0.00010	-0.00020
Diameter 2, In (rotated 90°)	0.00030	0.00020	0.00010	0.00010	0.00010	0.00010	0.0000.0	0.0000.0	0.0000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00020
											Difference between max and min readings, in:	en max and mi	in readings, in:		
											00 =	0 0002	= °06	0.0005	
											Maximum difference must be < 0.0020 in.	once must be <		Difference $= + 0.00025$	0.00025
												Flatness To	Flatness Tolerance Met?	YES	

-0.25 0.00 0.25 Diameter, in

-0.50

-0.75 -1.00

Dial Gage Reading, in 0.00100 0.00100 0.00100 0.00100 0.00100 0.002000 0.00200

End 1 Diameter 1

0.00200

End 2 Diameter 1

0.00200 0.00100 0 00000 -0.00100 -0 00200

Dial Gage Reading, in

-0.00010	-0.00007	0.00172	YES		-0.00018	-0.00023	0.00286	YES
End 1: Slope of Best Fit Line Angle of Best Fit Line.	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met?

PERPENDICULARITY (Procedure P1)	(Calculated from End Flatness and Parallelism measurements above)	and Parallelism ma	easurements ab	love)		
END 1 Differen	Difference, MaxImum and MinImum (in.) Diameter (in.) Slope	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°
Diameter 1, in	0.00020	2.480	0.00008	0.005	YES	
Diameter 2, in (rotated 90°)	0.00030	2.480	0.00012	0.007	YES	Perpendicularity Tolerance Met?
END 2						
Diameter 1, in	0.00020	2.480	0.00008	0.005	YES	
Diameter 2, in (rotated 90°)	0.00050	2,480	0.00020	0.012	YES	

0.75

0,50

0.25

-0.25 0.00 0.2 Diameter, in

-0.50

-0.75

-1 00

1.00 0.75

0.50

-0.25 0.00 0.25 Diameter, in

-1.00 -0.75 -0.50

-0.00100 -0.00200 YES

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-290	
Sample ID:	R-1	
Depth, ft:	2.88-3.32	

After cutting and grinding

After break

a subsidiary of Goocomp Corporation

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Engineering
Delaware River Deepening Project
Trincum to Marcus Hook Ranges, PA
9915
CB-290
R-1
2.88-3.32
R Client: Project Name: Project Location: Visual Description GTX #: Boring ID: Sample ID: Depth:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.31	5.32	5.32	Maximum gap between side of core and reference surface plate:
specimen Diameter, In:	2.48	2.49	2.49	Is the maximum gap < 0.02 in.?
Specimen Mass, g:	1248.02			
ulk Density, lb/ft ³	184			Maximum difference must be < 0.020 in.
muth to Diameter Ratio:	2.1			Straightness Tolerance Met? YES

Specimen Diameter, In:	2.48	82	2.4	2.49	2.49	19				Is the m	Is the maximum gap ≤ 0.02 in.?	.02 tn.?	YES		
Specimen Mass, g: Bulk Density, lb/ft ²	1248.02	.02									Maximum difference must be < 0.020 in.	nce must be < (0.020 in.		
Length to Diameter Ratio:	2.1										S	Straightness Tolerance Met?	lerance Met?	YES	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Procedu	are FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0,000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.0000.0	0.00000	0,00010	0.00000	0.00000	0.00000	00000000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00020	0.00020	0.00030
Dlameter 2, in (rotated 90°)	0.00020	-0.00020	-0.00010	-0,00010	0.0000.0	0.00000	0,00000	0.00000	0.00010	0.00010	0.000.0	0.00010	0.00020	0.00020	0.00020
											Difference between max and min readings, in:	en max and mis	n readings, in:		
											00	0.00040	= 006	0.00040	
END 2	-0.875	0.750	0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00010	0.00010	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00010	-0.00020
Diameter 2, in (rotated 90°)	-0.00020	0.00020	-0.00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00010	0.00010
											Difference between max and min readings, in:	en max and mix	n readings, in:		
											= 00	0.0003	= 06	0.0003	
											Maximum difference must be < 0.0020 in. Difference = $+ 0.00020$	nce must be <	0.0020 in. D	ifference = + (.00020
												Flathore To	Elatnoce Tolorance Mot7	VEC	

End 2 Diameter 2

-0.50

-0.75

-1.00

Dial Gage Reading, in

YES

0.00974

End 1 Diameter 2

0.00200

0.0000.0 -0.00100

Dial Gage Reading, in

0.00200 0.00100

REPRENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above) Angle and Parallelism measurements above) Perpendicularity Tolerance Met 2 Maximum angle of departure must be < 0.25°								
measurements above) Perpendicularity Tolerance Met? Maximum angle of departure must be < 0.25°								
Siope	P1)	(Calculated from End Flatness an	nd Parallelism mea	surements above	ve)			
2.485 0.00016 0.009 YES Perpendicularity Tolerance Met? 2.485 0.00012 0.007 YES Perpendicularity Tolerance Met? 2.485 0.00012 0.007 YES 2.485 0.00012 0.007 YES	Olfference	e, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
2.485 0.00012 0.007 YES Perpendicularity Tolerance Met? 2.485 0.00012 0.007 YES 2.485 0.00012 0.007 YES		0.00040	2.485	0.00016	600.0	YES		
2.485 0.00012 0.007 2.485 0.00012 0.007		0.00040	2.485	0.00016	600.0	YES		
2.485 0.00012 0.007 2.485 0.00012 0.007								
2.485 0.00012 0.007		0.00030	2.485	0.00012	0.007	YES		
		0.00030	2.485	0.00012	0.007	YES		

-0.50

-0.75

-1 00

-0.00200

YES

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-290	
Sample ID:	R-2	
Depth, ft:	1.03-1.48	

After cutting and grinding

After break

Client:	O'Brien & Gere Engineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdu
GTX #:	9915		
Boring 1D:	CB-290		
Sample ID:	R-2		
Depth:	1.03-1.48 ft		
Visual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.42	5.43	5,43	Maximum gap between side of core and reference surface plate:
specimen Diameter, in:	2.49	2.48	2.49	Is the maximum gap ≤ 0.02 in.?
Specimen Mass, g:	1261.94			
Bulk Density, Ib/ft ³	182			Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2			Straightness Tolerance Met? NO

Specimen Mass, g:	126.	1261.94														
Bulk Density, Ib/ft ³	18	182									Maximum difference must be < 0.020 in.	nce must be < (0.020 in.			
Length to Diameter Ratio:	2.	.2									18	Straightness Tolerance Met?	lerance Met?	NO		
END FLATNESS AND PARALLELISM (Procedure FP1)	LELISM (Proced	lure FP1)														
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	
Dlameter 1, in	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00010	0.0000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0,00020	-0.00020	
Diameter 2, in (rotated 90°)	-0.00020	-0.00010	0.00000	0.0000.0	0.0000.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00020	
											Difference between max and min readings, In:	en max and mir	readings, In:			
											= 00	0.00040	= 006	0.00020		
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0,375	0.500	0.625	0.750	0.875	
Diameter 1, in	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	-0.00010	0.00010	0.00010	0.00020	-0.00020	-0.00020	
Diameter 2, in (rotated 90°)	0.0000.0	0.0000.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	0.00010	-0,00010	-0.00010	
											Difference between max and min readings, in:	en max and min	readings, in:			
											= o0	0.0003	= °06	0.0001		
											Махітит difference must be < 0.0020 іп.	nce must be < t		Difference = + 0.00020	.00020	
												Flatness To	Elatrose Toloranco Mot?	VES		

y = -0.00027x + 0.00004

End 1 Diameter 1

0.00200

y = -0.00021x - 0.00002

End 2 Diameter 1

0.00200

1.00 0.75

0.50

-0.25 0.00 0.25 Diameter, in

-0 50

-0.75

-1,00

ni Gage Reading, in 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.

Dial Gage Reading, in

0.75 0.50

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-1.00

Dial Gage Reading, in

-0.00027	-0.00021	0.00344	YES		-0.00004	-0.00007	0.00172	YES
DIAMETER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met?

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	(Calculated from End Flatness at	nd Parallelism me	asurements abo	ive)			
END 1 Differe	nce, Maximum and Minimum (In.)	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Dlameter 1, in	0.00040 2.485 0.00016	2.485	0.00016	0.009	YES		
Diameter 2, in (rotated 90°)	0.00020	2,485	0.00008	0.005	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00030	2,485	0.00012	0.007	YES		
Diameter 2, in (rotated 90°)	0.00010	2.485	0.00004	0.002	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-290	
Sample ID:	R-3	
Depth, ft:	6.40-6.81	

After cutting and grinding

After break

a subsidiary of Geocomp Corporation

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Engineering
Delaware River Deepening Project
Tinicum to Marcus Hook Ranges, PA
9915
CB-290
R-3
6-40-6.81
R-5
See @hotograph's Client. Project Name: Project Location: Boring ID: Sample ID: Depth:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

LK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.91	4.92	4.92	Maximum gap between side of core and reference surface plate:
Specimen Dlameter, in:	2.49	2.49	2.49	Is the maximum gap ≤ 0.02 in,? NO
pecimen Mass, g:	1035.15			
ulk Density, lb/R³	164			Maximum difference must be < 0.020 in.
ength to Diameter Ratio:	2.0			Straightness Tolerance Met? NO

ND FLATNESS AND PARALLELISM (Procedure FP1)	LELISM (Proced	fure FP1)													
END 1	0.875	0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0,00060	-0.00060	-0.00060	0.00050	-0,00050	-0.00030	0.00000	0.00000	0.0000	0.00010	0.00020	0.00040	0.00040	0,00050	0.00050
Diameter 2, in (rotated 90°)	0.00020	0.00010	0,00010	0,00010	-0.00020	-0.00010	-0.00010	0,00000	0.00000	-0.00020	-0.00010	-0.00020	-0.00030	-0.00030	-0.00030
											Difference between max and min readings, in: $0^{\circ} = 0.00110$ $90^{\circ} =$	on max and m 0.00110	n readings, in: 90° =	0.00050	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00060	-0.00060	-0.00060	-0.00048	-0.00030	0.00020	0.00000	0.00000	0.00010	0.00030	0.00030	0.00050	0.00050	0.00000	0.00060
Diameter 2, in (rotated 90°)	0.00010	0.00020	-0.00020	-0.00010	0.00000	0.00000	0.0000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	0.00020	-0.00030	0.00050
											Difference between max and min readings, in:	en max and mi	n readings, in:		
											≥ ₀0	0.0012	= 006	0.0007	
											Maximum difference must be < 0.0020 in.	nce must be <	0.0020 in.	Difference = + 0	0.0000.0
												Flatness T	Flatness Tolerance Met?	YES	

y = 0.00079x + 0.00001

End 2 Diameter 1

0.00200 0.00100 0.00000 -0.00100

Dial Gage Reading, in

-1.00

Dial Gage Reading, in

0.00200

1.00 0.75

0.50

-0.25 0.00 0.25 Diameter, in

-1.00 -0.75 -0.50

	0.00074 0.04240	0.00079 0.04526	0.00286	YES		0.00025	-0.00022 -0.01261	0.00172	YES
DIAMETER 1	End 1: Slope of Best Fit Line Angle of Best Fit Line.	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated
y = -0.00025x - 0.00009		1		0.50 0.75 100	y = -0.00022x - 0.00009		ľ		0,50 0.75 1.00

PERPENDICULARITY (Procedure P1)	(Calculated from End Flatness an	d Parallelism me	ism measurements above)	love)			
END 1 Difference, MaxImum and Minimum (in.) Diameter (in.)	Maximum and Minimum (In.) C	Diameter (In.)	1.) Slope		Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00110	2.490	0.00044	0.025	YES		
Diameter 2, in (notated 90°)	0.00050	2,490	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in Contact on Diameter 2 in Contact on Diameter 2	0.00120	2.490	0.00048	0.028	YES		
Digitierer 2, 111 (10) died 30)	0,000,0	2:430	0.00000	0.010	ICS		

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: 9915 Test Date: 07/03/10 Tested By: daa Checked By: mpd Boring ID: CB-291 Sample ID: R-2 5.52-5.98 Depth, ft:

After cutting and grinding

After break

7/3/2018 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Englneering Delaware River Deepening Project Tinicum to Marcus Hook Ranges, PA 8 R-2 5.52-5.98 Cllent: Project Name: Project Location: GTX #: Boring ID: Sample ID: Depth

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.51	5.51	5.51	Maximum gap between side of core and reference surface plate:
pecimen Diameter, in:	2.49	2.50	2.50	Is the maximum qap ≤ 0.02 in.? YES
pecimen Mass, g	1189.8			
JIK Density, Ib/ft ³	168			Maximum difference must be < 0.020 m.
ength to Diameter Ratio:	2.2			Straightness Tolerance Met?

End 1 Diameter 2

0.00200

y = 0.00020x - 0.00009

End 1 Diameter 1

0.875

+ 0.00020

0.875

0.25

-0 25 0.00

-0.50

-0.75

-1.00

Diameter, in

0.00200	0.00100	0.00000	-0.00100	-0 00200	-1 00
		1	+	4	-0.75
		1			-0 20
4		1	ł	+	-0.25 Di
-	1	1	H	+	5 0 00 C
		1	t	+	-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 Diameter, in
		1		-	0 20
	-	1	ł	+	0 75
				T	1 00

ERPENDICULARITY (Procedure F	PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism I	and Parallelism m.	neasurements above)	nove)			
END 1	Difference, Maximum and Minimum (In.) Diameter (In.)	Diameter (in ₊)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, In	0.00040	2.495	0.00016	0.009	YES		
Diameter 2, in (rotated 90°)	0.00020	2.495	0.00008	0.005	YES	Perpendicularity Tolerance Met?	YES
ND 2							
Diameter 1, in	0.00040	2.495	0.00016	0.009	YES		
Diameter 2, in (rotated 90°)	0.00020	2.495	0.00008	0.005	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-294	
Sample ID:	R-2	
Depth, ft:	4.45-4.91	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brian & Gere Engineering
Delaware River Deepening Project
Tinicum to Marcus Hook Ranges, PA
9915
CB-294
R-2
4-45-4,91
Exes photrigraghs Cllent: Project Name: Project Location: Boring ID: Sample ID: Depth:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
		2	Average	
Specimen Length, In:	5.49	5.50	5.50	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.48	2.49	2.49	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	1201.61			
Bulk Density, Ib/ft ³	171			Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2			Straightness Tolerance Met? NO

END FLATNESS AND PARALLELISM (Procedure FP1)	LELISM (Proce	dure FP1)													
END 1	0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125		0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00020	-0.00020	-0.00030
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.0000	0.0000.0	0.00000	0.0000.0	0.00000		0.00000	-0.00010	0.00010	0.00010	-0.00010
											Difference betwe	en max and mir	n readings, In:		
											= 00	0.00050	= 006	0.00010	
END 2	-0.875	-0.750	0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125		0.375 0.500 0.625	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00010	0.00010	0.00010	0.00000	0,00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010	-0.00030	-0.00030
Diameter 2, in (rotated 90°)	0.00010	0.00010	0.00010	0.00010	0.00010	0.000.0	0.00000	0.00000	0.00000		0.0000	0.0000.0	0.00000	0.0000.0	0.0000.0
											Difference betwe	en max and mi	n readings, in:		
											= a0	0.0005	= .06	0.0001	
											Maximum difference must be < 0.0020 in.	nce must be <	0.0020 in. D	Difference = + (.00025

0.75

0 20

-0.25 0.00 0.25 Diameter, in

-0 20

-0.75

-1.00

Dial Cage Reading, in

End 2 Diameter 1

0.00200

0.00000.0 0.00100

Dial Gage Reading, in

-0.00100 -0.00200

y = -0.00024x - 0.00003

End 1 Diameter 1

0.00200

1.00

0.50 0.75

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-1.00

-0.00024	-0.00025	0.00057	YES		-0.00006	-0.00008	0.00115	YES
DJAME I EK 1 End 1: Slope of Best Fit Line: Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Soberically Seated

PERPENDICULARITY (Procedure	PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	and Parallelism me	asurements at	nove)			
END 1	Difference, Maximum and Minimum (In.) Diameter (in.)	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met2	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00050	2.485	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0,00010	2.485	0.00004	0.002	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00050	2.485	0.00020	0.012	YES		
Diameter 2, In (rotated 90°)	0.00010	2.485	0.00004	0.002	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-294	
Sample ID:	R-2	
Depth, ft:	5.08-5.46	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Engineering Delaware River Deepening Project Traicum to Marcus Hook Ranges, PA 9915 CB-294 £ R-2 5.08-5.46 ft See photographs Visual Description Project Location: Project Name: Boring ID: Sample ID: Depth: GTX #:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

BULK DENSITY							1	DEVIATION FROM STRAIGHTNESS (Procedure S1)	M STRAIGHTN	ESS (Procedu	re S1)				
	1		2		Avera	age									
Specimen Length, in:	4.5		4.50		4.51	5			Maximum gap b	setween side of	core and referer	Maximum gap between side of core and reference surface plate:			
Specimen Diameter, in:	2.48	~	2.49		2.4	6				Is the n	Is the maximum gap ≤ 0.02 in.?	0.02 in.?	ON		
Specimen Mass, g	961.42	1.2													
Bulk Density, Ib/ft ³	167										Maximum differ	Maximum difference must be < 0.020 in.	0.020 m.		
Length to Diameter Ratio:	1.8											Straightness Tolerance Met?	Jerance Met?	NO	
END FLATNESS AND PARALLELISM (Procedure FP1)	LELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00020	0.00020	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0.00010	-0.00010
Diameter 7 in (retaked 90°)	000000	-0 00030	0.00030	000000	0 00010	000000	000000	000000	000000	000000	0.0000	000000	00000	0,000	0,000

Difference between max and min readings, in: $0^{\circ} = 0.00030$ $90^{\circ} =$

0.875 -0.00030 0.00040

0.750 0.00020 0.00040 0.000080

Difference = ± 0.00045

0.0009

0.375 0.500 0.625
-0.00010 -0.00010 0.00020
0.00010 0.00020 0.00030 10
Difference between max and min readings, in:

0° = 0.0004 90° =

Maximum difference must be < 0.0020 in.
Flatness Tolerance Met?

0.250 -0.00010 0.00000

0.125

0.000000

-0.125 0.00000 0.00000

0.00000

-0.375 0.00010 -0.00010

-0,500 0.00010 -0.00020

-0.625 0.00010 -0.00030

-0.750 0.00010 -0.00040

-0.875 0.00010 0.00050

Diameter 1, in Diameter 2, in (rotated 90°)

END 2

	-0.00017	-0.00022 -0.01261	0.00286	YES		0.00043	0.00047	0.00229	YES
DIAMETER 1	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated

PERPENDICULARI I (Procedure PA)	(Calculated from End Flatness a	nd Parallelism mea	surements abo	ive)			
END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope Angle®	rence, Maximum and Minimum (In.)	Diameter (In.)	Slope	Angleo	Perpendicularity Tolerance Met ²	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00030	2,485	0.00012	0.007	YES		
Diameter 2, in (rotated 90°)	0.00080	2.485	0.00032	0.018	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, In	0.00040	2.485	0.00016	0.009	YES		
Diameter 2, in (rotated 90°)	0.00090	2.485	0.00036	0.021	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-295	
Sample ID:	R-1	
Depth, ft:	3.14-3.58	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Engineering Delaware River Deepening Project Trincum to Marcus Hook Ranges, PA 9915 CB-295 R-1 3.14-3.58 ft Client: Project Name: Project Location: Boring ID: Sample ID: Depth:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, In:	5.33	5.33	5.33	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.47	2.49	2.48	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	1122.91			
ilk Density, lb/ft ³	166			Maximum difference must be < 0.020 in.
ength to Diameter Ratio:	2.1			Straightness Tolerance Met? NO

End 1 Diameter 2

0.00200

0.50

0.25

000 -0.25

-0.50

-0.75

-1,00

Diameter, in

Dial Gage Reading, in

y = -0.00043x - 0.00002		1.00
XC4000		0.75
n n		-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 Diameter, in
21		0.25 in
neter		5 0.00 0 Diameter, in
End 2 Diameter 2		-0.25 Dia
End		-0 50
		-0.75
	0,00200	-0.00200
	Gage Reading, in	

PERPENDICULARITY (Procedure	(Calculated from End Flatness	and Parallelism me	asurements at	(avoc			
END 1	END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope Ang	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met2	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00080	2.480	0.00032	0.018	YES		
Nameter 2, in (rotated 90°)	0.00070	2.480	0.00028	0.016	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00080	2.480	0.00032	0.018	YES		
Diameter 2, in (rotated 90°)	0.00070	2.480	0.00028	0.016	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-295	
Sample ID:	R-1	
Depth, ft:	5.72-6.18	

After cutting and grinding

After break

Client:	O'Brien & Gere Englneering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdw
GTX #:	9915		
Borring ID:	CB-295		
Sample ID:	R-1		
Depth:	5.72-6.18 ft		
Visual Description:	See photographs		

BULK DENSITY								DEVIATION FROM STRAIGHTNESS (Procedure S1)	M STRAIGHTN	ESS (Procedur	e S1)				
	1		2		Aver	age									
Specimen Length, in:	5.47	-	5.48	~	5.48	18			Maximum gap b	etween side of	core and referen	Maximum gap between side of core and reference surface plate:			
Specimen Diameter, in:	2.49	_	2.48	~	2.49	19				Is the m	Is the maximum gap ≤ 0.02 in.?	3.02 ln.?	NO		
Specimen Mass, g:	1217.63	63													
Bulk Density, 1b/ft ³	174										Maximum differ.	Maximum difference must be < 0.020 in.	0.020 m.		
Length to Diameter Ratio:	2.2										S	Straightness Tolerance Met7	lerance Met?	ON	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0,500	-0,375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in		0.00070	0.00070	0.00010	0.00030	0.00020	0.00010	0.00000	0,00000	0.00000	-0.00010	-0.00010	-0.00010	-0,00020	-0.00030
Diameter 2 in (rotated 90°)	0 00000	ייט מעטעט טיי	02,000 0-	00000	0.000.0	010000	0 00000	000000	000000	000000	000000	000000	200000	0 00000	0.0000

0.500 -0.00010 0.00000 n max and r

Difference betw 00 0.875 -0.00070 0.00010

0,750 -0.00060 0,00010 0.00050

Difference = + 0.00050

0.0005 YES

0.375 0.500 0.625
-0.00020 -0.00040 -0.00060
0.00000 -0.00020 0.00000
Difference between max and min readings, in:
0° = 0.0009 9° = 0.0009
Maximum difference must be < 0.0020 m. Difference Met?

0.250 -0.00020 0.000000

0.00000

0.000000

-0.125 0.00000 0.00000

-0.250 0.00000 0.00000

0.375

-0.500 0.00000 -0.00020

0.00000 -0.00030

-0.750 0.00020 -0.00040

0.00020 0.00040

END 2 Diameter 1, in Diameter 2, in (rotated 90°)

Dial Gage Reading, in

-0 00054	-0.00048	0.00344	YES		0.00029	0.00024	0.00286	YES
End 1: Slope of Best FIt Line Angle of Best FIt Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slape of Best Fit Line Angle of Best Fit Line	Maximum Angular Difference:	Parallelism Tolerance Met? Soberically Seated

ERPENDICULARITY (Procedure P1)	(Calculated from End Flatness at	nd Parallelism me	asurements ab	nove)			
END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope An	e, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angleo	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
iameter 1, in	0.00100	2.485	0.00040	0.023	YES		
lameter 2, in (rotated 90°)	0.00050	2.485	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
ND 2							
Diameter 1, In	0.00090	2,485	0.00036	0.021	YES		
Dlameter 2, in (rotated 90°)	0.00050	2.485	0.00020	0.012	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-297	
Sample ID:	R-1	
Depth, ft:	1.62-1.96	

After cutting and grinding

After break

Callent; O'Brien & Gere Engineering	Test Date: 7/3/2010		
Project Name: Delaware River Deepening Project	Tested By: daa		
Project Location: Trinium to Marcus Hook Ranges, PA	Checked By: mpd		
Checked By: mpd	Checked By: mpd		
Checked By: mpd	Checked By: mpd		
Ge-297	Checked By: mpd	Checked By: mpd	
Sample ID: CB-297	Checked By: mpd		
Sample ID: CB-297	Checked By: mpd	Checked By: mpd	
Sample ID: CB-297	Checked By: mpd	Checked By: mpd	
Sample ID: CB-297	Checked By: mpd	Checked By: mpd	
Sample ID: CB-297	Checked By: mpd	Checked By: mpd	
Sample ID: CB-297	Checked By: mpd	Checked By: mpd	Checked By: mpd
Sample ID: CB-297	Checked By: mpd		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
specimen Length, in:	4.01	4.02	4.02	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.48	2.49	2.49	Is the maximum gap < 0.02 in.?
specimen Mass, g:	952.33			
ulk Density, Ib/ft ³	186			Maximum difference must be < 0.020 in.
enoth to Diameter Ratio:	1.6			Straightness Tolerance Met? NO

0.875

0.750 0.00030 -0.00020

0.875 0.00040 -0.00030

0.750 0.00040 -0.00030

0.0000.0

Difference = + 0.00040 **YES**

0.0005

		DIAMETER 1	0.00001	y = -0.00028x - 0.00001	meter 2	End 1 Diameter 2			+ 0.00001	y = 0.00045x + 0.00001	End 1 Diameter 1	End 1 Di	
0020 in. Differ irance Met?	Maximum difference must be < 0.0020 in. Flatness Tolerance Met?	Maximum differe											
	0.0007	= ₀0											
readings, in:	ifference between max and min readings, in:	Difference between											
0.00020	-0.00020	-0.00010	-0.00010	0.00010	0.00000	0.00000	0.0000.0	0.0000	0.00000	0.00000	0.0000	0.00020	Diameter 2, in (rotated 90°)
0.00030		0.00020	0.00010	0.00000	0.00000	0.00000	-0.00010	-0.00020	0.00030	-0.00030	-0.00030	-0.00030	Diameter 1, in
0.625		0.375	0.250	0.125	0.000	-0.125	-0.250	-0.375	-0.500	-0.625	-0.750	-0.875	END 2
906	0° = 0.00080 90° = 90° =	Olliereine betwe											
-0.00020	-0.00020	-0.00010	0.00000	0.0000.0	0.00000	0.00000	0.00010	0.00010	0.00010	0.00020	0.00020	0.00020	Diameter 2, in (rotated 90°)
0.00030	0.00030	0.00020	0,00010	0.00000	0.00000	0.00000	0.00010	-0.00010	-0.00020	-0.00020	-0.00040	-0.00040	Diameter 1, in
0.625		0.375	0.250	0.125	0.000	-0.125	-0.250	-0.375	-0.500	-0.625	-0.750	-0.875	END 1

0.75 1.00

0.50

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-1.00

0.00045	0.00046	0.00057	YES		-0.00028	-0.00022	0.00344	YES
DIAMETER 1. End 1: Slope of Best Fit Line Andle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Anqular Difference:	Parallelism Tolerance Met? Sphenically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line;	Maximum Angular Difference:	Parallelism Tolerance Met? Soherically Seated

y = 0.00046x + 0.00001

End 2 Diameter 1

0.00200 0.00100 0.00000 -0.00100

Dial Gage Reading, in

0.75

0 20

-0.25 0.00 0.25

-0.75 -0.50

-1.00

0.00100 0.00000 0.00000 -0.00100 -0.00200

Dial Gage Reading, in

Diameter, in

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and	(Calculated from End Flatness a	nd Parallelism me	asurements ab	ove)			
END 1 Difference,	Difference, Maximum and Minimum (in.) Diameter (in.) Slope Ang	Dlameter (in.)	Stope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be $< 0.25^{\circ}$	
Diameter 1, in	0.00080	2.485	0.00032	0.018	YES		
Diameter 2, in (rotated 90°)	0.00050	2.485	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
ND 2							
Diameter 1, In	0.00070	2.485	0.00028	0.016	YES		
Diameter 2, in (rotated 90°)	0.00050	2.485	0.00020	0.012	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-300	
Sample ID:	R-1	
Depth, ft:	0.02-0.48	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O'Brien & Gere Engineering Delaware River Deepening Project Tinicum to Marcus Hook Ranges, PA ď 9915 CB-300 R-1 0.02-0.48 Client: Project Name: Project Location: Visual Descripti Boring ID: Sample ID: Depth: GTX #:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	5.51	5.53	5.52	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.47	2.46	2.47	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	1164,35			
Bulk Density, 1b/R ^J	168			Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	2.2			Strainhtness Tolerance Met? NO

y = 0.00016x - 0.00007

End 1 Diameter 1

0.00100 0.00000 0.00000 0.000100

Dial Gage Reading, in

y = 0.00019x - 0.00007

End 2 Diameter 1

0.00200 0.00100 0.00000 -0.00100

Dial Gage Reading, in

1 00

0.75

0,50

-0.25 0.00 0.25

-0 20

-0.75

-1 00

Diameter, in

0.00016 0.00917	0.00019 0.01089	0.00172	YES		0.00053	0.00046 0.02636	0.00401	YES
DIAMETER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line;	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated

PERPENDICULARITY (Procedure P1) (Caiculated from End Flatness and Parallelism measurements above)	(Calculated from End Flatness a	nd Parallelism me	sasurements ab	ove)			
END 1 Difference,	Difference, Maximum and Minimum (in.) Diameter (in.) Slope	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00030	2.465	0,00012	0.007	YES		
Diameter 2, in (rotated 90°)	0.00100	2.465	0,00041	0.023	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, ∤n	0.00030	2.465	0.00012	0.007	YES		
Diameter 2, in (rotated 90°)	0.00090	2.465	0.00037	0.021	YES		

0.75 1.00

0.50

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-1.00

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA 9915 GTX #: Test Date: 07/03/10 Tested By: daa Checked By: mpd Boring ID: CB-300 Sample ID: R-1 1.28-1.64 Depth, ft:

After cutting and grinding

After break

O'Brien & Gere Engineering
Delaware River Deepening Project
Tinicum to Marcus Hook Ranges, PA 9915
CB-300
R-1.28-1.64
See phiotographs Client: Project Name: Project Location: Boring ID: Sample ID: Depth:

7/3/2010 daa mpd

Test Date: Tested By: Checked By:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

BULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, in:	4.26	4.27	4.27	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.47	2.48	2.48	Is the maximum gap ≤ 0.02 in.? NO
Specimen Mass, g:	916.49			
Bulk Density, 1b/ft ³	170			Maximum difference must be < 0.020 in.
Length to Diameter Ratio:	1.7			Straightness Tolerance Met? NO

League to Diameter value.	1.1											or digniness in	Stranguities Oteranice met:	ON COL	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Proced	fure FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	0.125	0.000	0.125	0.250	0,375	0.500	0.625		0.875
Diameter 1, in	0.00060	0.00050	0.00040	0.00040	0.00030	0.00020	0,000,0	0.0000	-0.00010	-0.00010	-0,00010	-0.00020	-0.00030	-0.00030	0.00030
Diameter 2, in (rotated 90°)	0.00020	0.00010	0,00010	0.00010	0.00010	0.00000	0.00000	0.00000	0,00000	0.00000	-0.00010	-0.00010	-0.00010		0.00020
											Difference between	een max and mi	Difference between max and min readings, in:		
											= 00	0.00000	= 006		
END 2	0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	0.00050	0.00040	0.00040	0.00020	0.00020	0.00010	0.00010	0.00000	0.00000		0.00000	-0.00020	-0.00020		-0.00050
Diameter 2, in (rotated 90°)	0.00020	0.00020	0.00010	0.00010	0.00010	0.0000	0.00000	0.00000	-0.00010		-0.00010	-0.00010	-0.00010		0.00030
											Difference between	een max and mi	in readings, in:		
											00	0.001	= a06	0.0005	
											Maximum differe	Maximum difference must be < 0.0020 in.		Difference = + (0.00050
													Mary 100	a desired	

0.50

-0.25 0.00 0.25 Diameter, in

-1 00 -0.75 -0.50

Dial Gage Reading, in 0.00100

End 1 Diameter 1

0 00200

End 2 Diameter 1

0.00200.0 0.00100 0000000 -0.00100 -0.00200

Dial Gage Reading, in

1.00 0.75

0.50

-0.25 0.00 0.25 Diameter, in

-0.75 -0.50

-100

-0.00054	-0.00049	0.00286	YES		0.00018	-0.00025	0.00401	YES
End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Məximum Anqular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parailelism Tolerance Met? Spherically Seated

ERPENDICULARITY (Procedure)	ERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	and Parallelism me	sasurements at	ove)			
END 1	Difference, Maximum and Minimum (In.) Diameter (in.)	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00000	2,475	0.00036	0.021	YES		
Diameter 2, in (rotated 90°)	0.00040	2.475	0.00016	600.0	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00100	2.475	0.00040	0.023	YES		
Diameter 2, In (rotated 90°)	0.00050	2.475	0.00020	0.012	YES		

Client:	O'Brien & Gere Engineering	
Project Name:	Delaware River Deepening Project	
Project Location:	Tinicum to Marcus Hook Ranges, PA	
GTX #:	9915	
Test Date:	07/03/10	
Tested By:	daa	
Checked By:	mpd	
Boring ID:	CB-301	
Sample ID:	R-1	
Depth, ft:	3.54-3.96	

After cutting and grinding

After break

7/3/2010 daa mpd Test Date: Tested By: Checked By: O Brien & Gere Engineering
Delaware River Deepening Project
Trincum to Marcus Hook Ranges, PA
991.5
CB-301
R-1
3.54-3.96
R see photographs Client: Project Name: Project Location: Boring ID: Sample ID: Depth:

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D 4543-04

BULK DENSITY							_	SEVIATION FRO	DEVIATION FROM STRAIGHTNESS (Procedure S1)	ESS (Procedu	ire S1)				
	1		2		Avera	3ge									
Specimen Length, in:	5.05		5.05	1	5.05	2			Maximum gap b	etween side of	core and referes	Maximum gap between side of core and reference surface plate:			
Specimen Diameter, in:	2.48		2.49		2.4	6				Is the n	Is the maximum gap ≤ 0.02 in.?	0.02 in.?	YES		
Specimen Mass, g:	1054.66	26													
Bulk Density, Ib/ft ³	164										Maximum differ	Maximum difference must be < 0.020 in.	0.020 in.		
Length to Diameter Ratio:	2.0											Straightness Tolerance Met?	olerance Met?	YES	
END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Procedu	re FP1)													
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0,500	0.625	0.750	0.875
Diameter 1, in	-0.00030	-0.00030	-0,00020	-0,00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00010	0.00010	0.00020	0.00020
Diameter 2 in (rotated 00°)	0.0000	05000 0-	ก กกกวก	0.0000	000000	00000	000000	000000	000000	000000	000000	000000	000000	010000	000000

0.875 0.00010 0.00060

0.750 0.00010 0.00050

0.375 0.500 0.625 0.00000 0.00010 0.00010 0.00020 0.00030 0.00040 Difference between max and min readings, in: 0° = 0.0004 90° = Maximum difference must be < 0.0020 m. Di

0.250

0.125

0.00000

-0.125 0.00000 0.00000

-0.250 -0.00010 0.00000

-0.375 -0.00010 -0.00020

-0.500 0,00020 -0.00020

-0.625 -0.00020 -0.00030

-0.750 -0.00030 -0.00050

-0.875 -0.00030 -0.00050

END 2 Diameter 1, in Diameter 2, in (rotated 90°)

0.00110

min readings, in:

0.00050 0.500 0.00010 0.000030

Difference between = 00 + 0.00055

0.0011 Difference = YES

Flatness Tolerance Met?

0.00029	0.00024	0.00286	? YES		0.00054	0.00060	0.00344	? YES
DIAMETER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness a	and Parallelism me	asurements abo	ove)			
END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope Ar	Terence, Maximum and Minimum (In.)	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00050	2.485	0.00020	0.012	YES		
Diameter 2, in (rotated 90°)	0.00110	2,485	0.00044	0.025	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00040	2.485	0.00016	0.009	YES		
Dlameter 2, In (rotated 90°)	0.00110	2.485	0.00044	0.025	YES		

Client: O'Brien & Gere Engineering Delaware River Deepening Project Project Name: Tinicum to Marcus Hook Ranges, PA Project Location: 9915 GTX #: 07/03/10 Test Date: Tested By: daa Checked By: Boring ID: CB-301 R-1 Sample ID: 4.54-5.000 Depth, ft:

After cutting and grinding

After break

Client:	O'Brien & Gere Engineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdw
GTX #:	9915		
Boring ID:	CB-301		
Sample ID:	R-1		
Depth:	4.54-5.00 ft		
Visual Description:	See photographs		

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	, , d	2	Average	
Specimen Length, in:	5.63	5.62	5.63	Maximum gap between side of core and reference surface plate:
specimen Diameter, In:	2.49	2.49	2.49	Is the maximum gap < 0.02 in.?
Specimen Mass, g:	1179.48			
ilk Density, lb/ft ³	164			Maximum difference must be < 0.020 in.
rioth to Diameter Ratio:	2.3			Straightness Tolerance Mat? VES

y = 0.00061x - 0.00002

End 1 Diameter 1

0.00200

y = 0.00057x - 0.00005

End 2 Diameter 1

0.00200 0.00100 0.00000 -0.00100

Dial Gage Reading, in

1,00

0.75

0 20

0.25

-0.25 0.00

-0.50

-0.75

-1.00

Dial Gage Reading, In 0.00100 0.00100 0.00100 Diameter, in

0.00061	0.00057	0.00229	Met? YES		0.00015	0.00009	0.00344	Met? YES
DIAMELER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated	DIAMETER 2	End 1: Slape of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Spherically Seated

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	(Calculated from End Flatness an	nd Parailelism me	asurements ab	ove)			
END 1 Differen	Difference, Maximum and Minimum (in.) Diameter (in.) Slope	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00120	2.490	0.00048	0.028	YES		
Diameter 2, In (rotated 90°)	0.00030	2.490	0.00012	0.007	YES	Perpendicularity Tolerance Met?	YES
ND 2							
Diameter 1, in	0.00110	2.490	0.00044	0.025	YES		
Dlameter 2, in (rotated 90°)	0.00030	2,490	0.00012	0.007	YES		

0.75 1.00

0.50

0.25

-0.75 -0.50 -0.25 0.00 0 Diameter, in

-1.00

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: 9915 Test Date: 07/03/10 Tested By: daa Checked By: Boring ID: CB-303 Sample ID: R-2 Depth, ft: 5.03-5.38

After cutting and grinding

After break

Cllent:	O'Brien & Gere Engineering	Test Date:	Test Date: 7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdw
GTX #:	9915		
Borting ID:	CB-303		
Sample ID:	R-2		
Depth:	5.03-5.38 ft		
Visual Description:	See photographs		

ULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, In:	4.14	4.13	4.14	Maximum gap between side of core and reference surface plate:
Specimen Diameter, in:	2.48	2.49	2.49	Is the maximum gap < 0.02 in.?
specimen Mass, g:	874.48			
Bulk Density, Ib/ft ³	166			Maximum difference must be < 0.020 in.
enuth to Diameter Ratio:	1.7			Straightness Tolerance Met? YES

END FLATNESS AND PARALLELISM (Procedure FP1)	ELISM (Proce	dure FP1)													
END 1	0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, In	-0.00040	-0.00030	0.00020	-0.00020	-0.00010	-0.00010	0.0000	0.00000	0.00000	0.00020	0.00020	0.00030	0.00030	0.00040	0.00040
Diameter 2, in (rotated 90°)	000000'0	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00010	-0,00020	-0.00020	-0.00030
											Difference betw	Sifference between max and min readings, in: $0^{\circ} = 0.00080$ $90^{\circ} = 90^{\circ}$	n readings, in: 90° =	0.00030	
END 2	-0.875	-0.750	-0.625	0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in	-0.00040	-0.00030	0.00030	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00010	0.00020	0.00020	0.00030	0.00030	0.00040
Diameter 2, in (rotated 90°)	0.00010	0.00010	0.00010	0.00010	0.00010	0.00000	0.00010	0.00000	0.00000	0,00000	0.0000	0.0000	-0.00010	-0.00010	-0.00020
											Difference betwo	een max and mi	n readings, in:		
											- 00	= 0.0008 9000	= 006	0.0003	
											Maximum differ	Naximum difference must be < 0.0020 in.		Difference = +	0.00040
												Flatness To	Flatness Tolerance Met?	VEC	

1 00

0.75

0.50

-0.25 0.00 0.25 Diameter, in

-0.50

-1.00 -0.75

End 1 Diameter 1

0 00200

End 2 Diameter 1

0.00200

0.00045	0.02521	0.00057 YES		-0.00013	-0.00015	0.00115	YES
DJAMETER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line: Angle of Best Fit Line:	Maximum Angular Difference. Parallelism Tolerance Met?	DIAMETER 2	End 1: Slope of Best Fit Line Angle of Best Fit Line:	End 2: Slope of Best Fit Line Angle of Best Fit Line:	Maximum Angular Difference:	Parallelism Tolerance Met? Suberically Seared

ERPENDICULARITY (Procedur	: P1) (Calculated from End Flatness a	and Parallelism me	asurements ab	love)			
ID 1	END 1 Difference, Maximum and Minimum (in.) Diameter (in.) Slope An	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
ameter 1, In	0.00080	2.485	0.00032	0.018	YES		
Diameter 2, In (rotated 90°)	0,00030	2,485	0.00012	0.007	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, In	0.00080	2,485	0.00032	0.018	YES		
Diameter 2, in (rotated 90°)	0.00030	2.485	0.00012	0.007	YES		

1.00

0.75

0.50

-1.00 -0.75 -0.50 -0.25 0.00 0.25 Diameter, In

Dial Gage Reading, in 0.00100 0.00100 0.00100 0.00100 0.00100 0.002000 0.00200

Client: O'Brien & Gere Engineering Project Name: Delaware River Deepening Project Project Location: Tinicum to Marcus Hook Ranges, PA GTX #: 9915 Test Date: 07/03/10 Tested By: daa Checked By: mpd Boring ID: CB-307 R-2 Sample ID:

3.95-4.41

Depth, ft:

After cutting and grinding

After break

Cllent:	O'Brien & Gere Engineering	Test Date: 7/3/2010	7/3/2010
Project Name:	Delaware River Deepening Project	Tested By:	daa
Project Location:	Tinicum to Marcus Hook Ranges, PA	Checked By: mpd	pdu
GTX #:	9915		
Boring ID:	CB-307		
Sample ID:	R-2		
Depth:	3.95-4.41 ft		
Visual Description:	See photographs		

JULK DENSITY				DEVIATION FROM STRAIGHTNESS (Procedure S1)
	1	2	Average	
Specimen Length, In:	5.58	5.57	5.58	Maximum gap between slde of core and reference surface plate:
Specimen Diameter, in:	2.48	2.49	2.49	Is the maximum gap ≤ 0.02 In.?
Specimen Mass, g:	1205.86			
3ulk Density, 1b/ft ³	170			Maximum difference must be < 0.020 in.
enuth to Diameter Ratio:	2.2			Straightness Tolerance Met? YES

y = 0.00003x - 0.00007

End 1 Diameter 1

0.00100 0.0000.0 -0.00100

Dial Gage Reading, in

0.00200

0.875 -0.00010 0.00030

0.750 -0.00010 0.00030

0.875 -0.00020 0.00040

0.750 -0.00020 0.00030 0.00050

y = 0.00003x - 0.00015

End 2 Diameter 1

0 00200 0.00100 0.0000.0 -0 00100 -0.00200

Dial Gage Reading, in

1 00

0.75

0.50

0.25

-0.25 0.00

-0.50

-0.75

-1.00

Diameter, in

Slope of Best Fit Line 0.00003 Angle of Best Fit Line: 0.00172	Slope of Best Fit Line 0.00003 Angle of Best Fit Line: 0.00172	erence: 0.00000	Parallelism Tolerance Met? YES Spherically Seated		Slope of Best Fit Line 0.00030 Angle of Best Fit Line: 0.01719	Slope of Best Fit Line 0.00031 Angle of Best Fit Line: 0.01776	erence: 0.00057	Parallelism Tolerance Met? YES
End 1: Slope Angle	End 2: Slope Angle	Maximum Anqular Difference:	Paral Spher	DIAMETER 2	End 1: Slope Angle	End 2: Slope of Angle	Maximum Angular Difference:	Paral

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)	(Calculated from End Flatness a	nd Parallelism me	asurements abo	ave)			
END 1 Difference	Difference, Maximum and Minimum (in.) Diameter (in.) Slope	Diameter (in.)	Slope	Angle	Perpendicularity Tolerance Met?	Maximum angle of departure must be < 0.25°	
Diameter 1, in	0.00010	2.485	0.00004	0.002	YES		
Diameter 2, in (rotated 90°)	0,00050	2,485	0.00020	0.012	YES	Perpendicularity Tolerance Met?	YES
ND 2							
Diameter 1, in	0,00020	2.485	0.00008	0.005	YES		
Diameter 2, In (rotated 90")	0,00060	2,485	0.00024	0.014	YES		

1.00 0.75

0.50

-0.50 -0.25 0.00 0.25 Diameter, in

-1.00 -0.75

pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

tamparatura

A	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	T	temperature
В	pore pressure parameter for $\Delta \sigma_3$	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
C_c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ua	pore gas pressure
$C_{\mathbf{u}}$	coefficient of uniformity, D ₆₀ /D ₁₀	u_c	excess pore water pressure
C_{c}	compression index for one dimensional consolidation	u, u_w	pore water pressure
C_{α}	coefficient of secondary compression	V	total volume
C_{v}	coefficient of consolidation	V_{g}	volume of gas
C	cohesion intercept for total stresses	V _s	volume of solids
c'	cohesion intercept for effective stresses	V	volume of voids
D	diameter of specimen	V_{w}	volume of water
D_{10}	diameter at which 10% of soil is finer	V _o	initial volume
D_{15}	diameter at which 15% of soil is finer	v	velocity
D_{30}	diameter at which 30% of soil is finer	w	total weight
D_{50}	diameter at which 50% of soil is finer	W,	weight of solids
D_{60}	diameter at which 60% of soil is finer	W _w	weight of water
D_{85}	diameter at which 85% of soil is finer	W	water content
d_{50}	displacement for 50% consolidation	w _c	water content at consolidation
d_{90}	displacement for 90% consolidation		final water content
d_{100}	displacement for 100% consolidation	W _f W _l	liquid limit
E	Young's modulus		natural water content
e	void ratio	Wn	plastic limit
ec	void ratio after consolidation	Wp	shrinkage limit
e _o	initial void ratio	Ws	initial water content
G	shear modulus	Wo, Wi	slope of q _f versus p _f
Gs	specific gravity of soil particles	α α'	A A
Н	height of specimen		slope of q _f versus p _f '
ΡΙ	plasticity index	γ_t	total unit weight
i	gradient	γd	dry unit weight
Ko	lateral stress ratio for one dimensional strain	γs	unit weight of solids
k	permeability	$\gamma_{\rm w}$	unit weight of water
LI	Liquidity Index	3	strain
m _v	coefficient of volume change	ϵ_{vol}	volume strain
n	porosity	$\varepsilon_h, \varepsilon_v$	horizontal strain, vertical strain
PI	plasticity index	μ	Poisson's ratio, also viscosity
Pc	preconsolidation pressure	σ	normal stress
	$(\sigma_1 + \sigma_3) / 2$, $(\sigma_v + \sigma_h) / 2$	σ'	effective normal stress
p,	$(\sigma_1 + \sigma_3)/2$, $(\sigma_1 + \sigma_2)/2$ $(\sigma_1 + \sigma_3)/2$, $(\sigma_2 + \sigma_2)/2$	σ_c , σ'_c	consolidation stress in isotropic stress system
p'c	p' at consolidation	σ_h, σ'_h	horizontal normal stress
Q	quantity of flow	σ_{v}, σ'_{v}	vertical normal stress
	$(\sigma_1 \cdot \sigma_3)/2$	σ_1	major principal stress
q	q at failure	σ_2	intermediate principal stress
q _f	initial q	σ_3	minor principal stress
q_o, q_i	•	τ	shear stress
q _e S	q at consolidation	φ	friction angle based on total stresses
SL	degree of saturation	φ'	friction angle based on effective stresses
	shrinkage limit	φ',	residual friction angle
s _u T	undrained shear strength time factor for consolidation	ϕ_{ult}	φ for ultimate strength
1	time factor for consolidation		

DELAWARE RIVER, TINICUM TO MARCUS HOOK, PENNSYLVANIA, NEW JERSEY & DELAWARE GEOTECHNICAL INVESTIGATION OF PROPOSED ROCK CUT AREAS REPORT

Appendix C

Core Photographs

CB-289 RUN 2 CB-289 RUN 1 21 22 23 25 25 26 27 28 29 33 CB-289 RUN 2 CB-289 RUN 3

170° CB-303 RUN 4

CB-303 RUN 5

