NASSAU COUNTY BACK BAYS COASTAL STORM RISK MANAGEMENT FEASIBILITY STUDY

Scott Sanderson Project Manager North Atlantic Division/Philadelphia District/Coastal Planning Date: 27 June 2019

here the little second here the

Nautical Mile, Freeport, NY (2015)

- Study Background
- Plan Formulation Summary
- Process Overview
- Status Report Highlights
- Questions & Answers
- Closing Comments

Hurricane Sandy Damage, Oceanside, NY (2012)

OVERVIEW OF HURRICANE SANDY

- 22 October 2012 Hurricane Sandy originated in the southwestern Caribbean
- Hurricane Sandy increased to a size of more than 1,000 nautical miles – largest diameter storm recorded in the Atlantic basin
- 29 October 2012 Hurricane Sandy made landfall near Brigantine, NJ at about the same time as predicted high tide in the NY-NJ metropolitan area
- Total Damage Estimate \$65 billion
 - Highest storm surge and greatest inundation on land occurred in New Jersey and New York, especially in and around New York City
 - Surge was accompanied by powerful damaging waves in these areas, including Nassau County
 - High-water mark of 4.6 feet above ground level observed in Freeport in the Town of Hempstead

STUDY BACKGROUND

STUDY AUTHORITY

- Public Law 71, Chapter 140 (June 1955)
- Public Law 113-2 (Disaster Relief Appropriations Act of 2013)

NON-FEDERAL SPONSOR

- New York State Department of Environmental Conservation, in partnership with Nassau County
- Cost Sharing Agreement executed 30 September 2016

STUDY PURPOSE

- Determine the feasibility of a project to manage coastal storm risk in the back bays of southern Nassau County
- Recommend a coastal storm risk management plan that will contribute to community and environmental resilience

STUDY AREA: Extends ~ 30 miles east/west

- Nassau County: population of 1.3 million;
 287 sq. miles land area; 166 miles of water
- Dense, low, elevation mixed-use development; highly developed shoreline
- Critical infrastructure
- Hundreds of miles of highways, roads (Some are evacuation routes)
- Area subject to tidal impacts and coastal storm inundation

PLAN FORMULATION SUMMARY

PROBLEMS

- Frequent flooding from high tides, spring tides, sunny day flooding, and coastal storms
- High risk of coastal storm flooding and threat to life safety
- Ecosystem degradation in the back bays
- Relative Sea Level Change

OPPORTUNITIES

- Manage coastal storm flood risk
- Better communicate coastal storm risk
- Improve recreation and restore natural systems in ways that may provide coastal storm risk management benefits
- Contribute to community rebuilding and resilience

PLAN FORMULATION SUMMARY

PLANNING OBJECTIVES

- Reduce the risk of coastal storm damage to communities, public infrastructure, important societal resources, and the environment in southern Nassau County
- Contribute to the long-term sustainability and resilience of coastal communities and back bay environment in southern Nassau County

PLANNING CONSTRAINTS

- Avoid impact to Federal navigation channels
- Avoid impact to constructed and planned resilience projects
- Avoid induced flooding in adjacent communities, and flooding from rainfall or overwhelming of existing interior drainage systems
- Avoid impacts to critical infrastructure
- Minimize or avoid impacts to the environment and public access

PLAN FORMULATION SUMMARY – Structural Measures

Storm Surge Barriers

Natural & Nature-Based Features (NNBF)

Levees & Floodwalls

Nonstructural measures

- Building elevation
- Acquisition and relocation later
- Flood warning and evacuation planning
- Programmatic considerations
 - Land use
 - Floodplain management
 - Zoning
- Potential to combine with structural measures

US Army Corps

New York District

of Engineers.

POTENTIAL ALTERNATIVES

Alternative 1a - Inlet Barriers

Features - location TBD

9

US Army Corps

New York District

of Engineers.

POTENTIAL ALTERNATIVES

Nassau County Back Bays Coastal Storm Risk Management Feasibility Study

Alternative 1b - Inlet and Back Bay Barriers

* Nonstructural and Natural and Nature-Based Features - location TBD

POTENTIAL ALTERNATIVES

Nassau County Back Bays Coastal Storm Risk Management Feasibility Study

Alternative 2 - Structural

location TBD

Nonstructural and Natural and

0 0.75 1.5 3 4.5 6 Miles

POTENTIAL ALTERNATIVES

12

Nassau County Back Bays Coastal Storm Risk Management Feasibility Study

SUMMARY OF HYDRODYNAMIC MODELING

- Hydrodynamic model results show three principle processes for storm surge entering the bay:
 - Storm surge propagation through the three tidal inlets
 - Local wind-driven storm surge along the bay axis
 - Overwash across the barrier islands

Nassau County - Storm Selection Match Hazard Curve 25 v2

ĨHĬ

SUMMARY OF ECONOMIC ANALYSIS

- Total study area extends across 3 counties (Nassau, Queens and Suffolk)
 - Detailed structure inventory assessments are currently only available for Nassau County
 - Further investigation on the structure inventory in Queens County and Suffolk County is ongoing and will be implemented when calculating total storm-induced damage estimates
 - Nassau County structures and contents account for over \$55 billion in total value with an additional \$2 billion in value from assessed vehicles
 - With further refinement of the Queens Cty. and Suffolk Cty. inventories, the total study area inventory is expected to approach 150,000 total structures with over \$100 billion in total damageable assets

SUMMARY OF ENVIRONMENTAL ANALYSIS

- The environmental effort to date has focused on documenting existing conditions in the study area
 - Land use, geology, soils, topography, water resources, water quality, wildlife, vegetation, infrastructure, hazardous, toxic, and radioactive waste, cultural and recreational resources, noise, and aesthetics.
- As alternatives are further refined, impacts to environmental resources will be assessed
- Based on current formulation, environmental resources likely to be impacted include:
 - Coastal Barrier Improvement Act (CBIA) of 1990 / Coastal Barrier Resource System
 - Estuarine Ecosystems Wetlands,
 Submerged Aquatic Vegetation, tidal flats, etc.
 - Wildlife Avian and aquatic (marine finfish, shellfish, and other wildlife)
 - Threatened & Endangered Species (Birds, mammals, reptiles, and fish)
 - Essential Fish Habitat
 - Recreational Resources (beaches, and national, state, and county parks)
 - Aesthetics

POST-STATUS REPORT UPDATE

16

- Coastal Engineering Modeling
 - Hydrodynamic modeling of 2 additional cross-bay closure alignments:
 - Loop & Meadowbrook State Parkway
 - Robert Moses Causeway
- Economic Analysis
 - Structure Inventory Update
 - Without Project Conditions Update

PROPOSED SCHEDULE

Milastana Data		
Milestone	Date	
Cost-Sharing Agreement Signed	30 September 2016 (Actual)	
Alternative Milestone	16 August 2017 (Actual)	
Status Report	30 April 2019 (Actual)	
Tentatively Selected Plan Milestone	May 2020	
Draft Feasibility Report/Env. Impact Statement	June 2020	
Agency Decision Milestone	January 2021	
Final Feasibility Report/Env. Impact Statement	January 2022	
Chief of Engineers Report	April 2022	

Note: Schedule is dependent on approval of 3x3x3 Exemption by the Assistant Secretary of the Army for Civil Works (ASA – CW)

QUESTIONS & ANSWERS

18

