Tookany Creek Feasibility Study Hydrologic Model With Project Conditions

Mike Bartles

Hydraulic Engineer Philadelphia District July 31, 2013

US Army Corps of Engineers BUILDING STRONG_®

With Project Conditions

- Structural and Non-Structural Solutions
 - Warning Systems
 - Buyouts
 - Channelization
 - Storage Areas
 - Floodwalls / Levees
 - Low Impact Development
 - etc.
- Implementation Concerns
 - Structural / Geotech
 - Environmental
 - Societal

Figure 2

Low Impact Development

Rain Barrels

• Modeling Assumptions

- 2500 ft² building roof space
- 50 gal drums
 - 0.032 inches of runoff from 2500 ft² will fill 1 drum
 - 5 drums per building = 0.16 inches of runoff per building
- One Building per grid cell (each grid cell is ~2420 ft²)
- Buildings assigned using NLCD 2006 for all spaces designated as:
 - (22) Developed, Low Intensity
 - (23) Developed, Medium Intensity
 - (24) Developed, High Intensity
- Results in 24,325 rain barrels
- Assumptions favor greater reductions in runoff -> More impact than likely

Image from Philadelphia Water Department

Low Impact Development Options Rain Barrels Figure 3

Low Impact Development

Porous Pavement

- Modeling Assumptions
 - ½ inch of runoff intercepted by areas with greater than 75% impervious cover
 - Results in approx. 600 acres of porous pavement
 - Assumptions favor greater reductions in runoff -> More impact than likely

Image from PA BMP Manual

Figure 4

Storage Areas

- "Dry Dams" with no permanent pool
 - Minimize environmental damage
 - Maximize available flood storage
- NOT this big...

Figure 6

Small-Scale Dry Dam Examples

Figure 7

Image courtesy of Dr. Robert Traver, Villanova University

Small-Scale Dry Dam Examples

Figure 8

Possible Storage Area W. Waverly Rd. DCNR / PAMAP Orthophotograph Figure 9

Possible Storage Area W. Waverly Rd. DCNR / PAMAP Orthophotograph Figure 10

JULY 2013

Elevation-Storage Relationship

Upper Tookany Creek Flow Change Locations DCNR / PAMAP Orthophotograph Figure 12

Annual Chance Exceedance – Peak Flow Rate Existing Conditions vs. Possible West Waverly SA Flow Change Location 10A – D/S of Rt. 152 Figure 13

Annual Chance Exceedance – Peak Flow Rate Existing Conditions vs. Possible West Waverly SA Figure 14

Flow Change Location 8 – U/S of Keswick Ave. Culvert Confluence

Annual Chance Exceedance – Peak Flow Rate Existing Conditions vs. Possible West Waverly SA Flow Change Location 6 – U/S of Rock Creek Confluence

Figure 15

Possible Storage Areas – Upper Tookany Creek DCNR / PAMAP Orthophotograph Figure 16

Possible Storage Areas – Upper Tookany Creek Results at Easton Rd. DCNR / PAMAP Orthophotograph

Figure 17

Possible Storage Areas – Upper Tookany Creek Results at Keswick Ave. Culvert DCNR / PAMAP Orthophotograph

Figure 18

Possible Storage Areas – Upper Tookany Creek *GSSHA* – *Google Earth Movie* Figure 19

Possible Hydrologic With Project Conditions DCNR / PAMAP Orthophotograph Figure 20

With Project #	Name	Туре
1	Upper Tookany SAs	SA
2	Doe Lane	SA
3	West Waverly Rd	SA
4	Church Rd	SA
5	Limekiln Pike	SA
6	Grove Park	SA
7	George Perley Bird Sanctuary	SA
8	Highland - Mt Carmel	SA
9	Baederwood Creek SAs	SA
10	Baeder Rd	SA
11	Highland East	SA
12	Highland West	SA
13	Limekiln - Ogontz	SA
14	Trib - Greenwood	SA
15	Washington Lane	SA
16	Rock Creek SAs	SA
17	SEPTA 11.22 Culvert	Constriction Removal
18	Rock Creek Culvert	Constriction Removal
19	Harrison Ave. Wall	Floodwall
20	Bickley Rd. Wall	Floodwall
21	Brookdale Ave. Wall	Floodwall
22	5 Rain Barrels / Building	LID
23	Porous Pavement	LID

Figure 21

Conclusions

- Some With Project Conditions work, others don't
- Can combine options
 - i.e. Storage Areas plus wetland creation
- Still need plan optimization
 - Environmental Issues
 - Economics
 - Other issues

Figure 22